
Typing in object�oriented languages�

Achieving expressiveness and safety �

Kim B� Bruce

Williams College
September ��� ����

Abstract

While simple static�typing disciplines exist for object�oriented languages like C��� Java�
and Object Pascal� they are often so in�exible that programmers are forced to use type casts
to get around the restrictions� At the other extreme are languages like Beta and Ei�el� which
allow more freedom� but require run�time or link�time checking to pick up the type errors that
their type systems are unable to detect at compile time�

This paper presents a collection of sample programs which illustrate problems with existing
type systems� and suggests ways of improving the expressiveness of these systems while retaining
static type safety� In particular we will discuss the motivations behind introducing �MyType��
�matching�� and �match�bounded polymorphism� into these type systems�

We also suggest a way of simplifying the resulting type system by replacing subtyping by
a type system with a new type construct based on matching� Both systems provide for binary
methods� which are often di�cult to support properly in statically�typed languages�

The intent is to explain why the problems are interesting via the series of sample programs�
rather than getting bogged down with pages of type�checking rules and formal proofs� The
technical details 	including proofs of type safety
 are available elsewhere�

Contents

� Introduction �

��� Why type checking� �
��� Plan of the paper �

� Types and Subtypes� Classes and Subclasses �

��� Types and subtypes �
����� Record types �
����� Function types �
����� Types of variables � 	
����
 Object types ��

��� Classes and Subclasses ��
��� Di�erences between subtypes and subclasses �

�This research was partially supported by NSF grant CCR���������

�

�

� Simple type systems are lacking in �exibility ��

��� The need to change return types in subclasses ��
��� The need to change parameter and instance variable types in subclasses � � � � � � � ��
��� Other typing problems �	

� Toward more �exible type systems ��

�� Subtyping of method types in subclasses ��

�� Examples using exible types ��

� Introducing MyType ��

� The matching relation between types ��

��� Type checking classes using matching ��
��� Matching is necessary in type checking classes ��

	 Binary methods complicate subtyping �

��� Subclasses do not generate subtypes ��
��� A new de�nition of subtyping for object types ��

� Evaluating the use of MyType ��

� Combining parametric polymorphism with matching ��

	�� Polymorphism and container classes ��
	�� Constraining polymorphism � the failure of subtyping � � � � � � � � � � � � � � � � � � ��
	�� Match�bounded polymorphism �

	�
 History of matching and match�bounded polymorphism � � � � � � � � � � � � � � � � �

�
 Solutions to Ei�els covariant type problems �	

���� Ei�el�s system validity check ��
���� Solving covariance problems with match�bounded polymorphism � � � � � � � � � � � ��
���� Meyer�s solution� Banning polymorphic catcalls �
�

�� Replacing subtyping with matching ��

���� Simplifying matching �
�
���� Replacing subtyping by hash types �

���� Hash types are not compatible with binary methods � � � � � � � � � � � � � � � � � �
�
���
 Evaluation �
�

�� Conclusions and related work �	

A Example linked list program using matching ��

List of Figures

� A record s� fl� �U� � l� �U� � l� �U� g� and r � fl� �T� � l� �T� � l� �T� � l� �T� g masquerad�
ing as an element of type fl� �U� � l� �U� � l� �U�g� �

�

� A function f � Func�R�� U � and f �� Func�S �� T masquerading as f � � � � � � � � � � 	
� A variable x � ref T � and x �� ref S masquerading as x � � � � � � � � � � � � � � � � � � ��

 A Point class� ��
� A Colorpoint subclass �

� Typing DeepClone methods in subclasses� ��
� Node class ��
� Changing types of methods in subclasses� ��
	 Circle and ColorCircle classes with more exible types� � � � � � � � � � � � � � � � � � ��
�� Node class with MyType� ��
�� Doubly�linked node class� ��
�� Node class with MyType� �	
�� Procedure illustrating that subclasses need not generate subtypes� � � � � � � � � � � ��
�
 List type function� ��
�� The type Comparable �

�� Binary search tree type functions� ��
�� BinSearchTree classes� ��
�� Polymorphic Circle classes� �	
�	 Animal and herbivore classes �
�
�� Polymorphic animal and herbivore classes �
�
�� A type safe rewrite of breakit using match�bounded polymorphism� � � � � � � � � � �
�

� Introduction

The object�oriented paradigm has been adopted by an increasing number of programmers and or�
ganizations over the last decade because of its clear advantages in organizing and reusing software
components� It would clearly be advantageous to be able to provide static type systems for object�
oriented languages that are of the same quality as those available for more standard procedural
languages� Unfortunately commercially available object�oriented languages fall far short of that
goal� The static type systems of object�oriented languages tend to be either insecure or more in�
exible than one might desire� In some cases the rigidity of the type system leads programmers to
rely on type casts �sometimes checked at run�time� sometimes not� in order to obtain the expres�
siveness desired� In other cases� the type systems are too exible� requiring the run�time system to
generate link�time or run�time checks to ensure the integrity of the computation� In this paper we
explore the type�checking systems of object�oriented programming languages� examining problems
and suggesting solutions�

��� Why type checking�

Every value generated in a program is associated with a type� In a strongly typed language�
the language implementation is required to check the types of operands in order to ensure that
nonsensical operations� like dividing the integer � by the string �hello�� are not performed� In a
dynamically typed language most operations are type�checked just before they are performed� In
a statically typed language� every expression of the language is assigned a type at compile time� If
the type system can ensure that the value of each expression has a type compatible with the type
of the expression� then type checking of most operations can be moved to compile time�

There are many advantages to having a statically type�checked language� These include provid�
ing earlier �and usually more accurate� information on programmer errors� providing documentation
on the interfaces of components �e�g�� procedures� functions� and packages or modules�� eliminating
the need for run�time type checks� which can slow program execution� and providing extra informa�
tion that can be used in compiler optimizations� One possible disadvantage of static typing is that
because static type checkers are necessarily conservative� a static type checker for a programming
language may disallow a program that would in fact execute without error� Thus statically typed
programming languages may be less expressive than dynamically typed languages�

Procedural languages like Pascal �Wir���� CLU �L����� Modula�� �Wir���� and Ada �� �US ����
and functional languages like ML �HMM��� and Haskell �HJW	�� have reasonably safe static typing
systems� While some of these languages have a few minor holes in the type system �e�g�� variant
records in Pascal�� languages like CLU and Ada provide fairly secure type systems� Moreover�
support for polymorphism has been very helpful in increasing the expressiveness in statically typed
imperative and functional programming languages like CLU� Ada� ML� and Haskell�

In object�oriented programming languages� typing issues are more focussed on whether a mes�
sage can be sent to a particular object �i�e�� whether the receiver has a method which can be
executed in response to the message�� Nevertheless the basic issues are very similar� However�
extra complications arise from the presence of subtyping and the use of a pseudo�variable �usually
written as self or this� to stand for the object executing the method� Because of subtyping� actual
parameters to methods �or functions or procedures� can be of a type di�erent from that speci�ed
in the declaration of the corresponding formal parameters� Because of inheritance� method bodies
which are compiled for one class can be reused in subclasses� We must make sure that these features
which support reuse do not cause holes in the typing system�

Unfortunately the situation for static type checking in object�oriented languages is not as good
as for procedural languages� The following is a list of some properties of type�checking systems
of some of the more popular object�oriented languages �or the object�oriented portions of hybrid
languages��

� Some show little or no regard for static typing �e�g�� Smalltalk �GR�����

� Some have relatively inexible static type systems� which require type casts to overcome
de�ciencies of the type system� These type casts may be unchecked� as in C�� �Str��� and
Object Pascal �Tes���� or checked at run�time� as in Java �AG	���

� Some provide mechanisms like �typecase� statements to allow the programmer to instruct
the system to check for more re�ned types than can be determined by the type system �e�g��
Modula�� �CDG����� Simula��� �BDMN���� and Beta �KMMPN�����

� Some allow �reverse� assignments from superclasses to subclasses� which require run�time
checks �e�g�� Beta� Ei�el �Mey	����

� Some require that parameters of methods overridden in subclasses have exactly the same
types as in the superclasses �e�g�� C��� Java� Object Pascal� and Modula���� resulting in
more inexibility than would be desirable� while others allow too much exibility in changing
the types of parameters or instance variables� requiring extra run�time or link�time checks to
catch the remaining type errors �e�g�� Ei�el and Beta��

�

Thus all of these languages either require programmers to program around de�ciencies of the
type system� require run�time type�checking� or allow run�time type errors to occur� While features
like typecase statements and run�time checked casts or reverse assignments may occasionally be
necessary to handle di�cult problems with heterogeneous data structures� we would prefer to have
type systems which allow us to program as naturally as possible� while catching as many type errors
as possible at compile time� As we shall see later� many problems arise because of the conation
of type with class and with the mismatch of the inheritance hierarchy with subtyping� Whatever
the cause� there appears to be a lot of room for improvement in moving toward a combination of
better security and greater expressiveness in the type systems�

��� Plan of the paper

In the rest of this paper we discuss the complications that arise in designing static type�checking
systems for object�oriented languages� and sketch some ways of avoiding these problems by pro�
viding more exible and expressive type systems� Of course we wish to ensure that the resulting
systems are type safe�

We begin in section � by reviewing briey the de�nitions of types� classes� subtypes� and sub�
classes� and illustrating their uses in object�oriented languages� In section � we discuss relatively
simple type�checking systems like those in C��� Object Pascal� and Modula��� in order to see what
problems arise with the most obvious type systems� In section
 we see that we can easily add more
exibility by allowing programmers to replace methods in subclasses by new ones whose types are
subtypes of the original�

In many cases this still does not provide enough expressiveness for the type system to capture the
programmer�s intentions� Thus in section � we introduce the type expression MyType which is used
to provide a exible type for self� the receiver of a message� In the following section we introduce
the very important notion of matching� a relation similar to� but distinct from� subtyping� The
importance of matching will result from the fact that it is much closer to the inheritance ordering
than subtyping is� allowing us to type check methods in such a way that they remain type safe
when inherited� We discuss problems that arise with subtyping and so�called binary methods in
section �� We then evaluate what the addition of MyType means for the type system in section ��

In section 	 we introduce a kind of constrained polymorphism called match�bounded polymor�
phism that allows us to write reusable code that is more exible in handling objects of di�erent
types� In the following section we show how to use this to provide a solution to Ei�el�s covari�
ant typing problems� We also briey discuss Ei�el�s link�time system validity check and Bertrand
Meyer�s recent �no polymorphic catcalls� proposal to deal with these problems�

In section �� we step back to look at the constructs we have introduced with the view of creating
a simpler system� This reexamination will lead us to consider the rather radical step of designing a
system that dispenses with the notion of subtyping� We close with a summary and discuss related
work�

� Types and Subtypes� Classes and Subclasses

The notions of type and class are often confounded in object�oriented programming languages� In
fact they play quite distinct roles� and can be usefully distinguished from each other� Types pro�
vide interface information that determines when certain operations are legal� while classes provide

�

implementation information including the names and initial values of instance variables and the
names and bodies of methods� In the �rst subsection we discuss types and subtypes� while in the
following subsection we discuss the notions of class and subclass�

��� Types and subtypes

A type in a programming language represents a set of values and the operations and relations that
are applicable to them� For example the Integer type represents the set of whole numbers and the
usual integer operations and relations� including �� �� �� �� �� �� div� and mod� An object type
representing a point represents a collection of points and the messages that can be sent to point
objects�

Strongly typed languages provide type�checking mechanisms to ensure that nonsensical opera�
tions are not applied to values� Such a language is sometimes said to be type safe� For example a
strongly typed language will ensure that two characters are not added together as though they were
integers� While these type checks can be provided at run�time� in this paper we will concentrate
on static or compile�time type�checking mechanisms�

In statically�typed programming languages like Pascal and C� expressions are assigned types by
the type checker� A set of typing rules based on the structure of expressions are used to build up
a static type for each expression� The type checker� if correct� guarantees that if an expression has
static type T � then� when that expression is evaluated at run time� the result will be a value of type
T � In particular� then� a static type�checking system determines in which contexts an expression
may legitimately occur�

In object�oriented languages� the most important operation is sending a message to an object�
In this case one goal of type checking is to ensure that inappropriate messages are not sent to
objects� In particular if a message is sent to an object� the type system should ensure that the
object has a method with the same name� and that the formal parameter and return types are
compatible with those of the call� From a typing point of view� then� a message send to an object
is similar to extracting a �eld from a record in which the �eld happens to be a function�

Types in imperative or functional programming languages include base types like Integer � Real �
Character � etc�� as well as operators which can be used to build new types� These operators can be
used to build record types� array types� and function and procedure types� among others� Object�
oriented languages replace most or all of these complex types with object types� Object types
provide information on the names and types of the methods supported by objects of that type�

A type S is a subtype of a type T �written S �� T � if an expression of type S can be used in
any context that expects an element of type T � Another way of putting this is that any expression
of type S can masquerade as an expression of type T � This de�nition is usually expressed in typing
rules by adding a subsumption rule stating that if S �� T and expression e has type S then e also
has type T � Thus in a type system with subsumption� if an expression can be assigned a type T �
it can also be assigned any type that is a supertype of T � This is in contrast to languages without
subtyping in which most expressions can be assigned a unique type�

The support for subtyping provides added exibility in constructing legal expressions of a lan�
guage� For instance� let x be a variable of type T � If e is an expression of type T � then x � � e is
a legal assignment statement� If S is a subtype of T and e � has type S � then x � � e � will also be
a legal assignment statement� Similarly an actual parameter of type S may be used in a function
or procedure call when the corresponding formal parameter�s type is declared to be T � In most

�

pure object�oriented languages� these mechanisms are supported by holding objects as implicit
references� and interpreting assignment and passing parameters as binding new names to existing
objects� i�e�� as ways of creating sharing�

How can we determine when one type is a subtype of another� A technical discussion of this
topic would take us far a�eld from the aims of this paper into the realm of programming language
semantics and type theory� Instead we will present intuitive arguments for determining when two
types are subtypes� Rest assured that the intuition can be backed up by more formal semantic
arguments� Because the typing of message sends has similarities to typing records of functions� we
begin with examining the simpler cases of record and function types now� holding o� on object
types until later� We also include a discussion of references �i�e�� types of variables� here� in order
to prepare for the later discussion of instance variables in objects� The subtyping rules in the rest
of this section are based on those given by Cardelli �Car��a��

����� Record types

Records associate values to particular labels� Thus a record representing a sandwich might associate
the label bread with the value rye and the label �lling with cheese� We will write such a record as

fbread � rye��lling � cheeseg�

The type of a record speci�es the type of the value corresponding to each label� In the example�
the type associated with bread might be BreadType and the type associated with �lling might be
FoodType � We will write this record type as

SandwichType � fbread �BreadType��lling �FoodTypeg�

As a short�hand notation� we write a record with labels li of type Ti for � � i � n in the form

fli �Tig��i�n �

For simplicity� we deal here only with immutable �or �read�only�� records of the sort found
in functional programming languages like ML� No operations are available that update particular
�elds of these records� One can only create them as a whole and extract the values of particular
�elds� We discuss later in this section the impact of allowing updatable �elds�

Suppose R and S are record types� with R �� S � In order for elements of R to masquerade as
elements of S � expressions of type R need to support all of the operations applicable to expressions
of type S �

Because the only operation available on a record is to extract a labeled �eld�� for R to mas�
querade as S � R must contain a corresponding �eld for each �eld l of S � Moreover the type of that
�eld in R must be a subtype of the corresponding �eld in S � since if r � R then r �l must be usable
in any context in which the same �eld selection of an element of type S makes sense�

In Figure � we show a record r � fl� �T� � l� �T� � l� �T� � l� �T� g masquerading as a record of type
fl� �U� � l� �U� � l� �U� g� Notice that the result of extracting the li �eld of r must be able to be
treated as being of type Ui � Notice also that type R may have more labelled �elds than S �since
the extra �elds don�t get in the way of any of the operations applicable to S ��

�One might also expect record construction to be an operation on a record� but we distinguish here �as is typical
in object�oriented languages	 between operations that can be applied to a value of a particular type� and operations
that result in a value of that type �usually called constructors	�

�

s

�

�

�

l�

l�

l�

U�

U�

U�

r

�

�

�

�

l�

l�

l�

l�

T�

T�

T�

T�

�

�

�

l�

l�

l�

U�

U�

U�

Figure �� A record s� fl� �U� � l� �U� � l� �U� g� and r � fl� �T� � l� �T� � l� �T� � l� �T�g masquerading as
an element of type fl� �U� � l� �U� � l� �U� g�

Thus a subtype of a record may have labeled �elds whose types are a subtype of the original�
and may also have more �elds than the original record type� We write this formally as follows�

flj �Tj g��j�n �� fli �Uig��i�k if k � n and for all � � i � k�Ti �� Ui �

For example� let

CheeseSandwichType � fbread �BreadType��lling �CheeseType� sauce�SauceTypeg�

If CheeseType �� FoodType � then the subtyping rule for records implies CheeseSandwichType ��
SandwichType � A record of type CheeseSandwichType can masquerade as a SandwichType since it
has the bread and �lling �elds expected of a Sandwich and the results of extracting the �lling �eld
�a value of type CheeseType� can masquerade as a value of type FoodType �

����� Function types

Functions map values of one type to elements of another type� For instance� the function length

takes strings to integers by returning the length of the string provided as an argument� The type
of a function is determined by the type of the arguments that the function may be applied to and
the type of the values returned from the function�

We write Func�S�� T for the type of functions that take a parameter of type S and return a
result of type T � Thus the type of the length function is Func�string�� integer�

If �Func�S �� T � �� �Func�R�� U �� then we should be able to use an element of the �rst func�
tional type in any context in which an element of the second type would type check�

Suppose we have a function f with type Func�R�� U� In order to use an element� f �� of type
Func�S �� T in place of f � the function f � must be able to accept an argument of type R and return
a value of type U � See Figure �� But f � is de�ned to accept arguments of type S � Now� as can be
seen from the �gure� f � can be applied to an argument� r � of type R if R �� S � In that case� using
subsumption� r can be treated as an element of type S � making f ��r� type�correct� Similarly� if the
output of f � has type T then T �� U will guarantee that the output can be treated as an element
of type U � Summarizing�

�Func�S �� T � �� �Func�R�� U � if R �� S and T �� U �

Again assuming that CheeseSandwichType �� SandwichType � we get that

Func�Integer�� CheeseSandwichType �� Func�Integer�� SandwichType �

	

R � f � U

S � f � � TR � � U

Figure �� A function f � Func�R�� U � and f �� Func�S �� T masquerading as f �

but
Func�SandwichType�� Integer �� Func�CheeseSandwichType�� Integer �

Procedure types� written Proc�S �� may be subtyped as though they were degenerate function
types that always return a default type Unit � which has only a single value� Thus

Proc�S� �� Proc�R�� if R �� S �

Notice that the ordering of parameter types in function and procedure subtyping is the reverse
of what might initially have been expected� while the output types of functions are ordered in the
expected way� We say that subtyping for parameter types is contravariant �i�e�� goes the opposite
direction of the relation being proved�� while the subtyping for result types of functions is covariant
�i�e�� goes in the same direction�� The contravariance for parameter types can be initially confusing�
because it is permissible to replace an actual parameter by another whose type is a subtype of the
original� However the key is that in the subtyping rule for function types it is the function� not the
actual parameter� which is being replaced�

Let us look at another example to illustrate why contravariance is appropriate for type changes
in the parameter position of functions and procedures� The contravariant rule for procedures tells
us that it is possible to replace a procedure� p� of type Proc�CheeseType� by a procedure� p �� of
type Proc�FoodType�� The procedure p can be applied to any value� cheese � of type CheeseType �
Because CheeseType �� FoodType � cheese can masquerade as an element of type FoodType � As
a result� p � can also be applied to the value cheese� Thus p �� and indeed any procedure of type
Proc�FoodType� can masquerade as an element of type Proc�CheeseType��

����� Types of variables

Variables of type T have di�erent properties from ordinary expressions of type T � because variables
may be assigned to� For instance if fv is a variable of type FoodType � and apple is a value of type
FoodType � then the statement fv � � apple is a type�correct statement� whereas apple� � fv is clearly
not correct�

If CheeseType �� FoodType and cheddar is a value of type CheeseType � then fv � � cheddar is
a type�correct statement� because we can always replace a value of a given type by a value of a
subtype� On the other hand� if cv is a variable of type CheeseType � then cv � � apple is not type�
correct� �For instance there may be an operation melt which can be applied to cheeses but not

��

general foods� and that would break when applied to cv if it held a value which was not of type
CheeseType �� Thus it is not type�correct to replace a variable of a given type by a variable of a
subtype� In this section we examine when a variable of one type may be replaced by a variable of
another type�

We refer to the types of variables as reference types� and say that a variable declared to have
type T actually has type ref T �� This name is reasonable since a variable of type T actually
denotes a location �or reference� in which one can store a value of type T � As we saw in the
example above� the fact that variables may be assigned to will have a great impact on the subtype
properties �or rather the lack of them� of reference types�

Suppose we have a variable x � of type S �i�e�� an expression of type ref S �� that we wish to
have masquerade as a variable of type T � See Figure �� We can think of a variable of type T as
having two values� an L�value and an R�value� The L�value is the location corresponding to the
variable� while the R�value is the value of type T actually stored there� For example� if n is an
integer variable� the �rst occurrence of n in n� � n � � is in a value�receiving context� while the
second occurrence is in a value�supplying context�

The use of variables in value�supplying contexts is represented in the �gure by the operation
�arrow� labeled �val� coming out of the variable �representing the R�value of the variable�� �A few
languages � ML is one � actually require an explicit �dereferencer� like val in all value�supplying
contexts�� Notice that if x is a variable of type T� val returns a value of type T �

By the de�nition of subtype� in order for a variable x � of type S to be able to masquerade as
a value of type T in all contexts of this kind� we need S �� T � This should be clear from the
right�hand diagram in the �gure� where in order for x � to provide a compatible value using the val
operator� S �� T �

A value�receiving context is one in which a variable of type T is assigned to� e�g�� a statement of
the form x � � e� for e an expression of type T � This is illustrated in the �gure by an arrow labeled
���� going into the variable� In this context we will be interpreting the variable as a reference or
location �i�e�� the L�value� in which to store a value� We have already seen that an assignment like
this is type safe if e has a type that is a subtype of the type of the variable x � Thus if we wish
to use a variable of type S in all contexts of this form� we must ensure that T �� S � Again this
should be clear from the right�hand diagram in the �gure�

Going back to the example at the beginning of this section� suppose we have an assignment
statement� cv � � cheese� for cv a variable of type CheeseType and cheese a value of type CheeseType �
If fv is a variable of type FoodType � then we can insert fv in place of cv in the assignment statement�
obtaining fv � � cheese� Because CheeseType �� FoodType � this assignment is legal�

Thus for a variable of type S to masquerade as a variable of type T in value�supplying contexts
we must have S �� T � while its use in value�receiving contexts require T �� S � It follows that
there are no non�trivial subtypes of variable �reference� types� Thus�

ref S �� ref T i� S � T �

where S � T abbreviates S �� T and T �� S � We can think of � as de�ning an equivalence class
of types including such things as pairs of record types that di�er only in the order of �elds� It is
common to ignore the di�erences between such types and to consider them equivalent�

�Thus� in this paper the statement�
x is a variable of type T �� has the same meaning as
x has type ref T��
This is similar to the usage in ML�

��

x
�

�

val

��
T

T
x �

�

�

val

��

S

S

�

�

val

��
T

T

Figure �� A variable x � ref T � and x �� ref S masquerading as x �

Another way of understanding the behavior of reference and function types under subtyping
is to consider the di�erent roles played by suppliers and receivers of values� Any slot in a type
expression that corresponds to a supplier of values must have subtyping behave covariantly �the
same direction as the full type expression�� while any slot corresponding to a receiver of values
must behave contravariantly �the opposite direction�� Thus L�values of variables and parameters of
functions� both of which are receivers of argument values� behave contravariantly with respect to
subtyping� On the other hand� the R�values of variables and the results of functions� both of which
are suppliers of values� behave covariantly� Because variables have both behaviors� any changes in
type must be simultaneously contravariant and covariant� Hence subtypes of reference types must
actually be equivalent�

We can use this analysis to lead us to subtyping rules for updatable records and arrays� Suppose
there exists a record update operation update r with l � e� which returns a new record value whose
l �eld is e� while the other �elds have the same values as in r � If r has a record type T that has a
�eld with label l and type T � then the update expression above will be type�correct if e has type
T � In the presence of such an operation� the record subtyping rule will have to be modi�ed to�

flj �Tj g��j�n �� fli �Uig��i�k if k � n and for all � � i � k�Ti � Ui �

Thus the subtype has at least the �elds of the supertype� but corresponding �elds must have
equivalent types because of the updating operation�

If full record assignments are possible �i�e�� r � � r �� for r and r � both records�� then we leave
it to the reader to show that record types have no non�trivial subtypes�

Similar arguments can be used to show that if arrays allow individual components to be updated�
then Array�S � �� Array�T � only if S � T � Thus the Java �AG	�� rule that Array�S � �� Array�T �
if S �� T is only type�safe if the arrays are read�only �similarly to the record expressions in section
������� For example� if A has type Array�S �� B has type Array�T �� and t has type T � then B �i �� � t

is type�correct� while A�i �� � t is generally not� The Java designers compensate for this static type
error by performing dynamic checks when an individual component of an array is assigned to��

����� Object types

The subtyping relation among object types can be rather subtle� In the simple type system con�
sidered in section �� object types are considered subtypes when the record of method types of the
subtype extends that of the supertype� That is� a subtype may contain more methods than the

�Apparently� Java includes this faulty rule in order to allow generic sorts �and similar operations	 to be statically
type checked� Support for parametric polymorphism �see section ����	 would allow the creation of type�correct generic
sorts without the need for this unsafe rule�

��

class Point

var

x �� �� Integer�

y �� �� Integer

methods

function getx���integer

begin

return x

end�

function gety���integer

begin

return y

end�

procedure move�dx� dy� integer�

begin

x �� x � dx�

y �� y � dy

end

end class�

Figure
� A Point class�

supertype� but the corresponding methods must have the same types� This is more restrictive than
the de�nition of subtype for immutable record types given above� We will see in section
 that a
less restrictive notion of subtyping is also correct�

��� Classes and Subclasses

Objects consist of both state and operations� The state is typically represented by a collection
of instance variables� while the operations are usually referred to as methods� Classes serve as
extensible generators of objects� providing the names and initial values for instance variables and
the names and bodies for methods� For example� the Point class in Figure
 speci�es that point
objects that are instances of this class will each include x and y instance variables �which are
initialized to �� and will support methods getx � gety � and move � The references to x and y in the
methods refer to the instance variables in the point object receiving the message�

In our example language� objects can be created by applying the new primitive to a class� Thus
evaluation of new Point results in the creation of a new point object� Each invocation of new Point

results in the creation of a distinct point object�
While a class speci�es the names� types� and initial values of instance variables and the names�

types� and meanings of the methods� the values of instance variables of individual objects can be
changed by the execution of that object�s methods� On the other hand the methods associated with
an object are �xed and may not be modi�ed once the object has been created� In the terminology
used in the previous subsection� instance variables of objects are mutable� while methods are
immutable� Not surprisingly� this di�erence between instance variables and methods has an impact
on the subtyping rules for objects developed later�

��

We do not confuse a class with the type of objects generated by the class� A class contains
implementation information rather than just describing the observable properties of an object� We
discuss this distinction in more detail in the next subsection�

If p is an expression representing a point� then the expression p�move�� � � � results in the look
up and execution of p�s move method �with parameters � and ��� This is usually referred to in
object�oriented languages as sending the message move�� � � � to p�

In Smalltalk and many other object�oriented languages� instance variables are not accessible
outside of the methods of an object� In such a language� the use of an expression p�x to access
p�s instance variable x would result in an error message� While the method call p�getx �� might
evaluate and return the current value of p�s instance variable� x � it is legal because it acts through
a method of the class� For simplicity� we adopt Smalltalk�s convention that all instance variables
are hidden outside of the object� and that all methods are visible�

Subclasses support the ability to create incremental di�erences in behavior by allowing the
programmer to de�ne a new class by inheriting the code of an existing class� while possibly replacing
or adding instance variables and methods� Thus class SC is a subclass of C if either SC is de�ned
by inheritance from C or is de�ned by inheritance from some subclass of C �

For example� suppose there exists a graphic window class supporting moving� resizing� and
redrawing windows� It is possible to de�ne a window with scroll bars by inheriting from the
original window class and adding instance variables to represent the scroll bar and methods to
support their use� It will also be necessary to modify the redrawing method to draw the scroll bars
in the correct positions�

The ability to de�ne a new class by specifying only its di�erences with an existing class is
the source of much of the power and productivity of the object�oriented paradigm� It allows the
programmer to reuse old code of a superclass in the de�nition of a subclass� It is thus important
that type�checking rules for object�oriented languages preserve this ability�

We present a simpler example in Figure � where we de�ne Colorpoint as a subclass of Point �
We add a new instance variable� color � and methods to access and set the color� To make the
example more interesting� we also modify the move method so that a newly moved colorpoint is
set to be red� The expression super �move�dx � dy� in Colorpoint �s move method indicates that the
method body of move from the superclass should be executed before the assignment of red to the
color instance variable� The speci�cation in the header of the subclass declaration that move is to
be modi�ed is not strictly necessary� but is a useful safeguard to ensure that an existing method is
not accidentally modi�ed�

Before �nishing our discussion of classes and subclasses we need to introduce one more construct�
During the execution of a method� it is frequently necessary to refer to the object executing that
method� either to pass it as a parameter or to invoke one of its own methods� For example� in a
class de�ning doubly�linked nodes� a method for attaching a new node to the right of an existing
node might consist of code for inserting the new node to the right� followed by code sending a
message to the new node asking it to attach the existing node to its left� �See the code for the
method attachRight in the doubly�linked node class in section ��� In order to be able to express
this� most object�oriented languages include a name for the object executing the method� Existing
languages use terms like self �Object Pascal and Smalltalk�� this �C�� and Java�� and Current

�Ei�el�� We will use the term self in this paper�
In most object�oriented languages� unquali�ed references to a method m inside a method body

is treated as an abbreviation for self �m� For clarity we will not adopt that convention and will

�

class Colorpoint inherits Point modifying move

var

color �� blue� ColorType

methods

function getColor���ColorType

begin

return color

end�

procedure setColor�newColor� ColorType�

begin

color �� newColor

end�

procedure move�dx� dy� integer�

begin

super�move�dx�dy�� color �� red

end

end class�

Figure �� A Colorpoint subclass

write out the message sends in full� However� because instance variables of an object are only
accessible inside methods of that object� we will write x rather than self �x for instance variable
accesses inside method bodies�

The notation self �m should remind us that� in general� the methods of an object can be mutually
interdependent� That is� any method of an object can invoke any other method of the object during
execution of its body by sending an appropriate message to self� Thus modifying one method of a
class in a subclass may have an impact on other methods that use it� This �potential� dependence of
each method on the other methods of the class will have an important impact on type checking the
methods in a subclass� as any change to the type of one method may a�ect the types of expressions
in the bodies of other methods�

��� Di�erences between subtypes and subclasses

There are important di�erences between subtypes and subclasses in supporting reuse� Subclasses
allow one to reuse the code inside classes � both instance variable declarations and method de�ni�
tions� Thus they are useful in supporting code reuse inside a class� Subtyping on the other hand is
useful in supporting reuse externally� giving rise to a form of polymorphism called inclusion poly�
morphism �CW���� That is� once a data type is determined to be a subtype of another� any function
or procedure that could be applied to elements of the supertype can also be applied to elements of
the subtype� Another way of putting this is that subclassing supports reuse of components� while
subtyping supports reuse of context�

Notice that the subtype relation depends only on the public interfaces of objects� not their
implementations� In particular if one type is a subtype of another� it is not necessary for objects
of those types to have arisen from classes that are in the subclass relation� By the same argument�
objects of the same type need not have arisen from the same class� They may have been generated

��

by classes with di�erent collections of �hidden� instance variables and method bodies� but whose
�visible� methods have the same types�

In languages supporting abstract data types� one may replace the implementation of a data
type in a program by another which has the same public interface� It is possible in object�oriented
languages for objects with the same public interface �i�e�� same type�� but di�erent implementations�
to be used interchangably and simultaneously in a program�

The papers �BHJ���� and �CHC	�� were two of the �rst to examine typing problems in statically�
typed object�oriented languages� Both papers make the point that subtyping has only to do with
interface and not implementation� Thus objects from several classes may be of the same type� Thus
there need be no connection between subclass and subtype�

Nevertheless� most existing object�oriented programming languages do identify type and class
as well as subtype and subclass� That is� a class is identi�ed with the type of objects it generates�
while only subclasses generate subtypes� �It is worth noting that some languages� like C��� support
a form of private inheritance which does not result in subtypes�� The new language Java provides
more separation of types from classes than is usual by providing interfaces which are distinct from
the classes which may conform to them�

We believe that it is unfortunate to identify subtyping and inheritance� as types should only
refer to the interface of an object� not its implementation� While the analysis of typing in the rest
of this paper can be pro�tably applied to languages which do identify subclass and subtype� our
analysis also shows how object�oriented languages could pro�t from the separation of these notions�

� Simple type systems are lacking in �exibility

Languages like Object Pascal� Modula��� and C�� arose as object�oriented extensions of imperative
programming languages� The static type systems of these languages have relatively simple and
straightforward type systems whose features are similar to those of the procedural languages from
which they were derived� In these simple type systems� the programmer has little exibility in
rede�ning methods in subclasses� as they require that a rede�ned method have exactly the same
type as the original method in the superclass�� We refer to type systems that restrict the types of
methods in subclasses to be identical to those in superclasses as invariant type systems�

Interestingly� even in these systems� when a method is inherited or rede�ned in the subclass�
one is often able to deduce more re�ned types for methods than the language allows to be written�
We present examples illustrating this below�

First a note on the terminology used in our examples� We use the convention in this paper of
writing CType for the type of objects generated by class C � Thus in Figure �� NodeType is the type
of objects generated by class Node� As mentioned in the previous subsection� we will �nd it helpful
to keep the notions of class and type separate� The type represents only the public interface of the
object �in our case the names and types of all of the methods� but not the instance variables�� while
the class includes names and initial values for instance variables and names and code for methods�

�The new C draft standard and some current compilers now allow return types of methods to be replaced by
subtypes in subclass �derived class	 de�nitions as long as the return type is a pointer type�

��

��� The need to change return types in subclasses

In our �rst examples we show that it is useful to be able to modify the return type of methods
when they are rede�ned in subclasses �and sometimes even when they are not��

As a quick �rst example� suppose we change the Point and ColorPoint classes from section
��� so that the move method actually returns a new point rather than just updating the instance
variables of the receiver� Thus the declaration of the move method in Point becomes�

function move�dx� dy� integer�� PointType�

���

When we de�ne ColorPoint as a subclass� we now want to have move return a colorpoint rather
than a point� There is no problem in writing the code to do this� However� the invariant type
systems do not allow this more re�ned type to be written in the declaration of the method in
ColorPointType � This type system requires the return type to remain as PointType � which then
would require the programmer to perform a type cast or similar operation in order to convince the
type system to actually treat the returned value as a color point�

While this example may seem a bit contrived� it shows up in a very important built�in operation
in many object�oriented languages� In most pure object�oriented languages �e�g�� Ei�el� Java� and
Smalltalk�� all objects are represented as references �i�e�� implicit pointers�� Thus assignment results
in sharing� rather than copying� In these languages� it is useful to have an operation which makes
a new copy or clone of an object� A common way of supporting this is to provide a ShallowClone

method in the top�most class of the object hierarchy �a class sometimes called Object�� so that all
other classes automatically inherit it�

The shallow copy is made by copying the values of instance variables and taking the same suite
of methods as the original� If the instance variables hold references to other objects� only the
references are copied� not the objects being referred to� Thus if this shallow clone method �call it
ShallowClone� is applied to the head of a linked list� only the head node is copied while the rest of
the list is shared between the new and old lists�

What should be the type of ShallowClone� When de�ned in the class Object � it seems apparent
that it should return a value of type ObjectType � However� when this is inherited by our class
Point � we would like it to return a value of type PointType � In the invariant type systems� the
return type of ShallowClone remains ObjectType even though the method actual returns a value
which is a point�

Often it is desirable to write a DeepClone method which is based on ShallowClone � One typically
�rst writes code to send the ShallowClone message to self to make the shallow copy� and then code
to clone all objects held in the instance variables of the original object�

����� THINK ABOUT ELIMINATING THIS �������� Suppose we have a class C that includes
a method DeepClone � which returns an object of type CType � See Figure �� Suppose we now de�ne
a subclass SC of C which includes new methods as well as a new instance variable holding an
object� Then DeepClone should be rede�ned to clone the contents of this new instance variable
after all of the code in the original DeepClone from C has been executed�

Unfortunately� the rules of the simple type systems require that DeepClone for SC to also return
a CType� just as in C � even though it is obvious that it actually returns an object of type SCType �
While this is not type�unsafe� it represents an unnecessary loss of information in the type system� If
we write anSC �DeepClone���newMeth�� for anSC of type SCType � the type checker will complain�
even though the object resulting from anSC �DeepClone�� has a method newMeth�

��

class C

var

���

methods

���

function DeepClone��� CType

begin ��� end

end class�

class SC inherits C modifying DeepClone

var

���

methods

���

function DeepClone��� SCType 		 illegal type change

begin ��� end�

procedure newMeth�� 		 method not contained in C

begin ��� end

end class�

Figure �� Typing DeepClone methods in subclasses�

In these circumstances� Object Pascal� C��� and Java programmers would normally be forced
to perform a type cast to tell the compiler that the cloned object has the type SCType� In the case
of Object Pascal and C��� the type cast is unchecked� In Java� it would be checked at run�time�
Modula�� programmers would use a typecase statement which also performs a run�time check to
get the same e�ect�

One could attempt working around these de�ciencies in the static type system by making up a
new name for the revised DeepClone method �e�g�� SCDeepClone�� Unfortunately this would mean
that inherited methods that included a message send of DeepClone would call the old DeepClone

for C rather than the updated method from SC actually desired� As a result the value in the
new instance variable will not be cloned� possibly causing problems later in the program� Thus
the restriction on changing types of methods in subclasses gets in the way of the programmer�
even though there should be no real typing problem� Not surprisingly� we have similar problems
even writing down the type of the built�in ShallowClone � In Object Pascal� ShallowClone is simply
given a type indicating that it returns an element of the Top type� It must then be cast to the
appropriate type�

��� The need to change parameter and instance variable types in subclasses

Our next example is one in which it would be convenient to change both return types and parameter
types of methods� The particular typing problem arises in connection with what are often called
binary methods� Binary methods are those methods that have a parameter whose type is intended
to be the same as the receiver of the message� Functions reecting orders� such as eq � lt � and gt � or
other familiar binary operations or relations are good examples of such methods� These are written

��

class Node

var

value � �� Integer�

next � nil� NodeType

methods

function getValue���Integer

begin

return value

end�

procedure setValue�newValue� Integer�

begin

value �� newValue

end�

function getNext���NodeType

begin

return next

end�

procedure setNext�newNext� NodeType�

begin

next �� newNext

end�

procedure attachright�newNext� NodeType�

begin

self�setNext�newNext�

end

end class�

Figure �� Node class

with single parameters in object�oriented languages because the receiver of the message plays the
role of the other parameter� Other compelling examples arise in constructing linked structures�
Binary methods are often di�cult to deal with in statically�typed object�oriented programming
languages� See �BCC�	�� for an extended discussion of typing problems with binary methods�

Figure � is a sample class de�nition to implement nodes for a singly�linked list� In the class
there is one instance variable for the value stored in the node and another to indicate the successor
node�� There are methods to get and set the values stored in the node� and to get and set the
successor of the node�

Notice that function getNext returns a value of type NodeType � the type of object generated by
class Node� while the procedures setNext and attachRight each take a parameter of type NodeType �
The method attachRight currently does exactly the same as setNext�newNext�� its use and value
will become more apparent in section � when it is modi�ed in a subclass�

�We note that all objects will be represented as references �implicit pointers	� As a result� there is no problem
supporting recursive types� The value nil is used as a null reference and is considered to be an element of all object
types�

�	

Suppose we now wish to de�ne a subclass of Node� DoubleNode� which implements doubly�linked
nodes� while taking advantage of the code for methods in Node � To do this we need to add to Node
an additional instance variable� previous � as well as new methods to retrieve and set the previous
node� Note that if DoubleNodeType is the type of objects generated from the class� then we will
want both the next and previous instance variables to have type DoubleNodeType � and the relevant
methods to take parameters or return values of type DoubleNodeType rather than NodeType � This
is particularly important because we do not want to attach a singly�linked node to a doubly�linked
node�

Unfortunately in the simple type system described here we have no way of changing these types�
either automatically or manually� in the subclass� Thus to get the desired typings� we would have
to de�ne DoubleNode independently of Node � even though much of the code is identical� This is
clearly undesirable��

��� Other typing problems

In both of the examples above� the problem types in methods have been the type of the object
being de�ned� While this is an extremely important special case� there are other examples where
a type should be changed in a subclass� but the original and revised types are di�erent from that
corresponding to the class being de�ned� This often arises when we have objects with components�
For example� suppose we have a circle class with a getcenter method� which returns a point� If we
de�ne a subclass that represents a color circle� it would be natural to wish to rede�ne getcenter to
return a color point� This would be illegal by the rules on method types in these object�oriented
languages� We wish to have a typing system that allows such changes� as long as they are type
safe�

In this section we illustrated several problems with invariant type systems� In each case the
di�culty arose from a desire to change the types of methods which are modi�ed in subclasses�
However no changes to the types of methods are allowed in these type systems� In order to
alleviate this rigidity in the simple systems� in the next section we allow more exibility in the
type system by supporting some disciplined changes to types of methods in subclasses� whether or
not the methods are modi�ed� This will solve simple problems like those arising in the circle and
colored circle classes� However� more extensive changes will be required to take care of examples
involving the deep and shallow clone methods and with the Node and DoubleNode classes�

� Toward more �exible type systems

As pointed out in the last section� there are many circumstances under which we would like to
change the types of methods in subclasses� What keeps us from making arbitrary changes to the
types of these methods� The main complication in changing the types of methods in subclasses
is that a method in a class may call any other method from the class by sending the appropriate
message to self� That is� changes to one method may have an impact on both the typing and
meaning of another method in the same class� In this section we discuss the changes to method
types that are guaranteed not to cause typing problems�

�It is worth noting here that because it contains a binary method� DoubleNodeType will not be a subtype of
NodeType � See section � for a detailed discussion�

��

class C

methods

function m�s�S�� T

begin ��� end�

function n�an
s�S�� U

begin

��� self�m�an
s� ���

end

end class�

class SC inherits C modifying m

methods

function m�s�S��� T� 		 For which S��T� will this change be safe�

���

end class�

Figure �� Changing types of methods in subclasses�

��� Subtyping of method types in subclasses

Figure � shows a well�typed class containing methods m and n� where m has type Func�S �� T �
The body of method n includes a message send of m�an s� to self� We presume that the body of
method n will be well�typed if m has type Func�S �� T � Suppose we override m in a subclass so
that it has type Func�S ��� T �� In general� the only way to be sure that the occurrence of self �m in
the body of n is still compatible is to require that Func�S ��� T � �� Func�S �� T �this is� after all�
exactly what the subtype relation guarantees��

Thus we can guarantee type safety when forming subclasses if we restrict ourselves to overriding
a method with a new one whose type is a subtype of the type of the original��

By a similar analysis of message sending outside of the object�s methods� one can easily show
that this restriction on changing the types of methods in subclasses is su�cient to guarantee that the
resulting object types will be subtypes� Later we will add more powerful constructs to our language
that will result in subclasses sometimes failing to generate subtypes� However the possibility of
mutually recursive de�nitions of methods will still require us to restrict changes in types of methods
to subtypes�

We can write down the subtype relation on object types more formally� An object type that
supports methods mi of type Ti for � � i � n can be written either

ObjectType

m� T�

���

mn� Tn

end ObjectType

�Of course it is technically possible to keep track of which methods are called by other methods and annotate each
class with that information� While this would allow more freedom in making changes to some methods� this seems
too painful for regular use and may require a data �ow analysis of even indirect uses of an object�

��

or more compactly as ObjectTypefmi �Tig��i�n � The rule for subtyping object types can be written
as

ObjectTypefmj �Sj g��j�m �� ObjectTypefmi �Tig��i�n if n � m and for each i � n� Si �� Ti �

Notice that this is essentially the same rule that we had for record types� When we add the new
construct MyType in the next section� the de�nition of subtyping for object types will become more
complex�

Because methods are always functions or procedures� we can indicate more exactly the changes
allowed to types of methods in subclasses� Recall from the previous section that subtyping of
function types is contravariant in the parameter type and covariant in the result type� Thus� in
overriding a method in a subclass� we may replace a result type by a subtype and a parameter
type by a supertype� This exibility in changing result types is clearly very useful� However few
compelling examples seem to exist of the value of replacing a parameter type by a supertype�
The most likely scenario for thus changing parameter types would be if the original method had a
parameter speci�cation that was needlessly constraining and could thus be easily broadened in the
method for the subclass�

��� Examples using �exible types

A few examples will help illustrate how we can use this extra exibility� as well as where further
exibility is needed�

In Figure 	 we show parts of a Circle class with a method getCenter whose type is Func���
PointType� That is� it is a parameterless procedure that returns a point representing the center
of the circle� Suppose ColorPointType is a subtype of PointType � Then a ColorCircle subclass
could rede�ne getCenter to have type Func��� ColorPointType� thus returning a colored point for
the center of the circle�

On the other hand� if Circle class also has a method changeCenter with type Proc�PointType�
then we may not change its type inColorCircle to Proc�ColorPointType�� Because PointType occurs
in a contravariant �parameter� position in the type of changeCenter � it may only be replaced by a
supertype� which would not be of much use here� If� however� we dropped changeCenter in favor of
the procedure move� whose only parameters are integers� then no di�culty arises with the subclass�

While the replacement of method types by subtypes in subclasses solves some typing problems�
it does not solve them all�

Unfortunately� we do not have the same exibility in changing the types of instance variables as
we do with methods� Recall from the previous section that a variable whose declared type is T is
actually a value of type ref T � As discussed in section ���� reference types have no subtypes because
they can be used in either value�receiving �on the left side of ��� or value�supplying positions� As
a result� it is not possible to change the types of instance variables in subclasses�

Returning to our Circle example� if Circle has an instance variable center of type PointType �
we may not replace its type by ColorPointType in the subclass� Instead� we must add a new
instance variable color with type ColorType � so that ColorCircle will have center and color instance
variables� The body of the rede�ned getCenter method in ColorCircle �which does return an
element of type ColorPointType� will have to create a color point value from the values in center

and color � This is not as convenient as we might like� but it does allow us to use inheritance where
the more rigid simple typing discipline did not�

��

class Circle

var

center � OrigPoint� PointType�

���

methods

function getCenter��� Point

begin

return center

end�

procedure changeCenter�newCenter� Point�

begin

center �� newCenter

end�

procedure move�dx�dy� Integer�

���

end class�

class ColorCircle inherits Circle modifying getCenter� changeCenter

var

color � red� ColorType

methods

function getColor��� ColorType

begin

return color

end�

procedure setColor�newColor� ColorType�

begin

color �� newColor

end�

function getCenter��� ColorPoint 		 legal change of type

begin ��� end�

procedure changeCenter�newCenter� ColorPoint� 		 illegal change of type

begin ��� end

end class�

Figure 	� Circle and ColorCircle classes with more exible types�

��

This ability to replace result types by subtypes helps us out with the clone example as well�
since if SC is a subclass of C � we want DeepClone in C to have type Func��� CType� while it should
have type Func��� SCType in SC � Because this is a covariant change in the result parameter� this
is a legal change in this more exible system�

However� there still remains a problem here� We would occasionally like to inherit DeepClone
in a subclass without change �for example� if we add or override methods without adding new
instance variables�� However in order to get its type to change appropriately� we would have to
override DeepClone just in order to change the result type� We also cannot simply include a call
of super �DeepClone�� from the corresponding method of SC � as it returns a value of type CType �
which is a supertype of what is needed� Thus we would have to rewrite DeepClone from scratch in
such situations� The changes suggested in the next section will allow us to specify that the result
type should change automatically in subclasses� even if we do not override the method�

Finally� notice that we still are unable to write the Node DoubleNode example from the
previous section� The problem is that even if DoubleNodeType were a subtype of NodeType�� the
method setNext has type Proc�NodeType� in Node and type Proc�DoubleNodeType� in DoubleNode �
Because the type of the parameter should vary contravariantly� not covariantly� this change of type
would be illegal in the subclass� In particular� if the type of the parameter of method setNext is
changed� while the type of the parameter of method attachRight is not� a type error will result�
Thus� if we wish to make covariant changes to the parameter type of a method m� we may have
to examine the bodies of all other methods of the class �including those which are inherited� to
identify which depend on the one being changed� We may then be required to make appropriate
changes to those methods in order to preserve type safety� �But don�t despair yet� In the next two
sections we will see how to handle uniformly some important special cases� including the Node
DoubleNode example��

As noted earlier� the new draft standard C�� proposal loosens the rules of C�� to allow
covariant changes to the result types of methods that are rede�ned in subclasses� There is no
similar proposal to allow contravariant changes to parameter types� presumably because� though
safe� there are few cases in which this would actually be helpful�

Ei�el� on the other hand� does allow covariant changes to both instance variables and parameter
types of methods in subclasses� This decision has provoked great controversy� �See �Coo�	� for an
early proposal to �x the Ei�el Stype system�� The arguments boil down to the following� On
the one hand� proponents argue that covariance for function parameter types is often useful� and
that actual run�type errors rarely result in practice� The counter�argument is that unrestricted
covariance for parameter types and instance variables is unsound� Both sides are correct� One of
the major problems in designing static type systems for object oriented programming languages
has been to design sound typing rules that support the examples where covariance appears to be
necessary�

In the next section we will introduce a new keyword� MyType� which can be used inside classes
to stand for the type of self� The use of this keyword will allow us to provide for type�safe covariant
changes to parameter and instance variables in many important cases� including the DoubleNode

example� The cost of providing this support for covariance is that subclasses will no longer always
generate subtypes�

	As noted in the previous section� it isn�t�

�

� Introducing MyType

The improved exibility in allowing changes to types of methods in subclasses introduced in the
previous section allowed some improvement in the type�checking capabilities of our object�oriented
language� but it did not help with our node or cloning examples� Providing more accurate infor�
mation on the type of self will turn out to be the key to overcoming these di�culties�

We have not yet discussed what type should be assigned to self for the purposes of static typing�
Suppose we have a class C with a method m� whose body contains one or more occurrences of self �
Languages with simple type systems like C��� Java� Object Pascal� and Modula�� presume that
self has the same type as the objects generated from the class being de�ned� By our conventions�
this would mean we would assume that self has the type CType in order to type check m�

However� look at what happens when we de�ne a subclass SC of C � If m is inherited without
change� it is roughly equivalent to copying the code in the body of m into SC �	 Thus� the meaning
of self changes to denote an element of type SCType � However� type checking the body of m under
the assumption that the type of self is CType is weaker than assuming its type is SCType as long as
SCType is a subtype of CType� That is� if SCType is a subtype of CType and m type checks under
the assumption that self has type CType � then it is guaranteed to type check under the �stronger�
assumption that self has type SCType � Thus as long as subclasses always generate subtypes �as
is the case in the simple type discipline described in section ��� we will not have di�culty with
inherited methods becoming type�unsafe in subclasses�

Returning to the Node example in Figure �� suppose we �nd a way to write DoubleNode as
a subclass of Node � As remarked earlier� setNext should be a binary method� That is� its argu�
ment should be of the same type as the object it is sent to� Thus while setNext has a parameter
of type NodeType in class Node� it ought to have a parameter of type DoubleNodeType in sub�
class DoubleNode� But then� because of contravariance� DoubleNodeType will not be a subtype of
NodeType � Nevertheless it makes perfectly good sense to de�ne DoubleNode via inheritance from
Node since most of the code of corresponding methods is identical� Aside from adding the new
getPrev and setPrev methods and the instance variable prev � only one of the methods of Node has
revised code � attachRight � the others are exactly the same as in the class Node �

Thus if we do manage to increase expressiveness of the language in order to write these subclasses
that we were previously barred from writing� then subclasses will no longer generate subtypes� As
a result we will have to be more careful in type�checking methods involving self � It will no longer
be su�cient to type check methods by assuming that the type of self has the same type as the
objects generated from the class�

In order to be able to handle self more accurately in type checking� we introduce the keyword
of MyType for its type� The key idea here is that MyType will play two di�erent but related roles
in describing the types of objects� In the typing of a particular object� the type expression MyType

can simply be seen as another name for the type of the object� However� when we write the code
for methods in a class� we will do it with the understanding that the meanings of self and MyType

are variable and will change in tandem within subclasses�
We may think of self and MyType as abbreviations for recursive de�nitions of the object and its

type� In fact� much of the early work on the semantics and typing of object�oriented languages was
done in the context of recursively de�ned records of methods� Early papers reecting this approach

This is actually only true if the body of m does not include any mention of super � but we can ignore that
possibility here�

��

class Node

var

value � �� Integer�

next � nil� MyType

methods

function getValue���Integer

begin

return value

end�

procedure setValue�newValue� Integer�

begin

value �� newValue

end�

function getNext���MyType

begin

return next

end�

procedure setNext�newNext� MyType�

begin

next �� newNext

end�

procedure attachRight�newNext� MyType�

begin

self�setNext�newNext�

end

end class�

Figure ��� Node class with MyType�

include �Car��a� CP�	� Red��� for untyped languages and �CHC	�� Mit	�� for typed languages�
The use of MyType provides for the smooth change of method types in subclasses� as is desired

for clone operations� For example� we may specify the type of the ShallowClone and DeepClone

methods to be Func��� MyType� If we send either of the messages ShallowClone�� or DeepClone��
to an object of type T � the result will be of the same type� T � as MyType stands for the name of
the type of the object executing the method�

The use of MyType also solves our typing problems with Node� We have rewritten the Node
example from Figure � in Figure ��� replacing all occurrences of NodeType by MyType� We have
also used MyType to specify the type of the instance variable next �

We now de�ne DoubleNode as a subclass of Node in Figure ��� The use of MyType in the
types of instance variables and methods ensures that all occurrences will change uniformly in the
subclass�

Language constructs giving the type of self an explicit name exist in Trellis Owl �SCB�����
Ei�el �Mey��� Mey	��� and Emerald �BHJ����� In Ei�el� the name for the type of self is a special
instance of a more general construct that allows the programmer to use an expression of the form

��

class DoubleNode inherits Node modifying attachRight

var

prev � nil� MyType

methods

function getPrev���MyType

begin

return prev

end�

procedure setPrev�newPrev� MyType�

begin

prev �� newPrev

end�

procedure attachRight�newNext� MyType�

begin

self�setNext�newNext��

newNext�setPrev�self�

end

end class�

Figure ��� Doubly�linked node class�

like x � for x an identi�er� This construct evaluates at compile time to the static type of x � Because
self in Ei�el is written Current � MyType is written like Current �

While we have shown that the use of MyType makes it possible to write cloning methods and
allows us to write DoubleNode as a subclass of Node� we have not yet discussed how methods
involving self and MyType can be type checked� While self has type MyType� what are we allowed
to assume about MyType� when type checking methods� If we type check under the assumption
that MyType is the same as the type of the objects generated by the class �e�g�� type check the
methods of Node under the assumption that MyType is the same as NodeType�� how can we be
certain that the inherited methods will still be type correct in the subclass� where MyType will have
a di�erent meaning� In the next section we address this question�

� The matching relation between types

Our type�checking rules for methods need to accommodate the fact that methods can be inherited
in subclasses� where the meanings of self and MyType are di�erent from those in the original class�
The di�culty� then� is that within a particular object� MyType has a �xed meaning �the type of
the object�� yet inside a class it will have a more �exible meaning� because methods and instance
variables from the class might also be inherited in a subclass� In this section we show how to cope
with the changing meaning of self and MyType in classes�

Our goal is to type check methods in a class in such a way that they are guaranteed to be
type�safe no matter how they are inherited� We saw in the previous section that we avoid typing
problems if we replace the types of methods by subtypes in subclasses� The following de�nition of
matching captures exactly this change in method types between object types�

��

We say that object type T � matches object type T � written T ��!T � i� for each method mi � Ti

of T there is a corresponding method mi � T
�
i of T � such that T �

i �� Ti � Put slightly di�erently�

ObjectTypefmj �T
�
j g��j�m�!ObjectTypefmi �Tig��i�n i� n � m and for each i � n� T �

i �� Ti �

It follows that if SC is a subclass of C then SCType �!CType � We will see below that matching
is weaker than subtyping� The di�erence between this and our earlier de�nition of subtyping for
objects is the presence of the keyword MyType�

One important point here� in determining whether two object types match in the above de�ni�
tion� we determine if T �

i �� Ti by treating MyType as an unconstrained free variable��
 As a result
the two types will certainly be subtypes in any particular context where MyType stands for some
�xed type�

��� Type checking classes using matching

As discussed earlier� when de�ning subclasses we will insist that the types of rede�ned methods be
subtypes of their types in the superclass� As a result the types of objects generated by subclasses
will always match the type generated by the superclass� Thus we can type check methods of a class
C under the assumption that self� MyType and MyType �!CType � This will ensure that inherited
methods are still type safe since the meaning of MyType in any subclass of C will match CType �
�A proof of this can be found in �Bru	
� or �BSvG	����

We have one more puzzle to solve before we can type check classes� Suppose that there is
an object� o� of type S with a method� m� whose type T involves MyType� What is the type of
o�m� The obvious answer is that its type is T � modi�ed so that all free occurrences of MyType are
replaced by S � the type of the receiver� After all� MyType was designed to represent the type of
the receiver�

We can make this more precise as follows� Let the notation T �S�MyType � represent the type
T in which all free�� occurrences of MyType have been replaced by the type S � Then o�m has
type T �S�MyType � if m has type T and o has type S � For example� if function equal is given type
Func�MyType�� Bool then �Func�MyType�� Bool��Ctype�MyType � � Func�CType�� Bool �

Suppose SCType �!CType � the type of method m in CType is T � and that the type of m
in SCType is ST � By the de�nition of matching we know that ST �� T � If o is an object
of type SCType then the type of o�m is ST �SCType�MyType �� But when we determined that
ST �� T � we made no assumptions about MyType� As a result� it is possible to show that
ST �SCType�MyType � �� T �SCType�MyType �� because uniform substitution of a type expression
for a type variable does not a�ect subtyping� �See the subtyping rules in �Bru	
�� for example�� In
particular� then� o�m also has type T �SCType�MyType � by subsumption�

Thus we can type check an expression representing a message send to an object even if we don�t
know the object�s exact type� In particular if SCType �!ObjectTypem�T and o has type SCType
then o�m has type T �SCType�MyType ����

��Actually it is safe to assume that MyType ��ObjectTypefmi �Tig��i�n
when determining whether T �

i �� Ti � but
we will not bother with that subtlety here� See �Bru��� BSvG��� for details�

��In case of nested object types� occurrences of MyType always refer to the most closely enclosing object type
de�nition� We treat the ObjectType constructor as binding all free occurrences of MyType that occur within its
de�nition�

��Though as above it might also have some other type which is a subtype�

��

Let us examine how we would type check the node example in Figure ��� The type correct�
ness of getValue and setValue are obvious� The methods getNext and setNext are type correct
because next has type MyType� Only the typing of the body of attachRight requires more care�
ful analysis� As stated above� we assume self has type MyType and MyType �!NodeType � Be�
cause MyType �!NodeType � we know that self has a setNext method whose type is a subtype of
Proc�MyType�� We conclude that the type of self �setNext is a subtype of Proc�MyType��MyType�MyType�
� Proc�MyType�� since the substitution of MyType for itself has no e�ect� Because newNext has
type MyType� the expression self �setNext�newNext� is well typed�

We now type check the subclass DoubleNode in Figure ��� The assumptions we used in type
checking Node �i�e�� that self has type MyType� and MyType �!NodeType� remain true in the
subclass� �In fact� in the subclass we are allowed to assume MyType �!DoubleNodeType � which
implies MyType �!NodeType by transitivity since DoubleNodeType �!NodeType �� Hence we have
no need to go back and re�examine any inherited methods for type correctness� The type correctness
of methods getPrev and setPrev follow easily from the fact that prev has type MyType�

Thus we need only concern ourselves with the rede�ned method attachRight � In order to attach
newNext to the right of self� �rst newNext is assigned to the receiver�s next �eld via the call to
setNext � Then the parameter� newNext � is asked to set self to its prev �eld via the message send of
setPrev to newNext with parameter self� The �rst message send to self is type correct for the same
reasons as in Node� The type correctness of the second message send follows by the same reasoning
since newNext and self both have type MyType� Note that the method would not type check if the
actual parameter to newNext �setPrev were of type DoubleNodeType rather than MyType�

In summary� if

�� rede�ned methods in subclasses are constrained to have types which are subtypes of those
given in the superclass� and

�� we type check methods of a class under the assumptions that self� MyType and MyType

matches the type of object generated by the class�

then we will be guaranteed that the inherited methods remain type�safe in subclasses�

��� Matching is necessary in type checking classes

Our assumption of MyType �!CType which was used in type checking the class C � is relatively
weak� More method bodies would type check if we assumed that MyType � CType � but we now
show that they would not necessarily remain type�correct when inherited�

Figure �� presents an example of a class subclass pair in which a method �in this case useEq�
of a class type checks under the assumption that MyType is exactly the type generated by the class
�in this case TestType�� but when inherited causes a run�time error due to a typing problem�

The subclass Subtest simply adds a new instance variable and method� and rede�nes the method
eq �without changing the typing�� If s is an object generated by class Subtest and p is an element
generated by Test �and hence having type TestType�� then the call s�useEq�p� will cause a run�time
error while within the body of the call of s�eq�p� made from the body of useEq � The problem is
that the receiver� s� is of type SubTestType � while the argument is of type TestType � Hence� when
the version of eq from SubTest is called� it will send the message getOtherval to the parameter� p�
which does not have a corresponding method to handle the call� causing a run�time error�

�	

class Test

var

value � �� Integer

methods

function getValue��� Integer �return value�

function eq�pt�MyType��Bool �return �value � pt�getValue��

function useEq�pt� TestType��Bool �return eq�pt��

end class�

class SubTest subclass of Test modifying eq

var

otherval � �� Integer

methods

function getOtherval���Integer� �return otherval�

function eq�pt�MyType��Bool �return �value � pt�getValue� �

�otherval � pt�getOtherval��

end class�

Figure ��� Node class with MyType�

Notice that the problem arises in the method useEq which was not changed in SubTest � Accord�
ing to our type�checking rules� the type of s�useEq should be Func�SubTestType�� Bool �obtained
from �Func�MyType�� Bool � by replacing all occurrences of MyType by SubTestType�� As a result�
the application to a parameter of type TestType is clearly an error�

How would the weaker type�checking assumption adopted in this section keep us from this error�
If we type check the methods of Test under the assumption that MyType �!TestType � then the
body of the method useEq will not type check� The problem is that the message send eq�pt� in
the body of useEq requires a parameter of type MyType� while pt has type TestType � Because we
only know that MyType �!TestType � we cannot deduce that pt also has type MyType� Thus type
checking the method body of useEq results in a type error� keeping us out of the trouble illustrated
above�

The reader may �nd it annoying to have type�checking rules which make illegal the code in
Test� even though no errors will occur in objects generated directly from this class� However it
is easy to change the code so that it is legal� Either change the type of the formal parameter of
eq from MyType to TestType or change the formal parameter of useEq from TestType to MyType�
While either change will enable the revised class to be type�correct� they have di�erent impacts on
the functionality of corresponding methods of subclasses�

This subtleness of type checking may make the reader nervous about uses of MyType� but the
arguments presented earlier in this section should be convincing for its safety� Moreover� formal
proofs of the soundness of the type�checking rules exist� and can be found in �Bru	
� and �BSvG	���
for example�

The appendix includes an example of a method that type checks under the strong assumption
that MyType � CType � but that fails under the weaker assumption that MyType �!CType � As
a result� ignoring the fact that the meaning of MyType changes in subclasses can result in broken

��

procedure breakit�n� n�� NodeType��

begin

n�attachRight�n��

end

Figure ��� Procedure illustrating that subclasses need not generate subtypes�

code� Type�checking under the matching assumption guarantees that no type errors result during
execution�

� Binary methods complicate subtyping

While the use ofMyType provides us with a great deal of exibility� there is one negative consequence
of its use that we hinted at earlier� The problem arises with the binary methods discussed earlier�
We can now describe these more precisely as methods that contain a parameter of type MyType�
The methods attachRight � setNext � and setPrev from the Node and DoubleNode classes in Section
� are examples of binary methods� Other familiar examples include methods equal and lessThan
that would require a parameter of the same type as the receiver� and then return Boolean values�

	�� Subclasses do not generate subtypes

As suggested earlier� binary methods cause problems with subtypes because the interpretation of
the MyType parameter of the binary method in the subclass is �smaller� than the interpretation in
the superclass �varies covariantly�� in contrast to the rules for subtyping of functions� which require
only contravariant changes to parameters� Thus if a class has a binary method� its subclasses will
not generate subtypes �though methods returning MyTypedo not in themselves get in the way of
subtyping��

We can make this problem more concrete by showing how our type system would be unsafe if
we assumed that DoubleNodeType were a subtype of NodeType � As expected� the problem arises
with a binary method� attachRight � Suppose we write the simple procedure breakit in Figure ���

If n� is of type NodeType � then n� �attachRight has type Proc�MyType��NodeType�MyType � �
Proc�NodeType�� If n� also has type NodeType � n� �attachRight�n� � type checks correctly� as does
the de�nition of breakit �

Now suppose that we make the call breakit�dn�n� where dn is of type DoubleNodeType and
n is of type NodeType � This causes the message attachRight to be sent to dn � However the
corresponding method in dn expects a parameter of type DoubleNodeType � Instead the parameter
n of type NodeType is provided� When the code of attachRight from class DoubleNode is executed�
�rst the method setNext is sent to self� causing no problems� However the method setPrev is then
sent to the actual parameter n� Because n has no method with this name� the program would
encounter a �message not understood� error at this point�

What could have gone wrong� Since the code of the procedure appears to type check correctly�
it must be the call which is not correct� Here the problem is the assumption that DoubleNodeType
is a subtype of NodeType � In fact they are not subtypes� and it is illegal to make the call of breakit
with dn as a parameter�

��

	�� A new de
nition of subtyping for object types

Now that we have introduced MyType� we must extend our de�nition of subtyping to consider the
di�erent meanings of MyType in the type expressions being compared�

We say that a type T is monotonic in type identi�er S i� S �� S � implies that T �� T �S ��S �
for all S � not occurring in T � For example� by our subtyping rules� the function type Func�S �� U
is monotonic in U � but fails to be monotonic in S �

A safe de�nition of subtyping for object types is�

ObjectTypefmj �T
�
j g��j�m �� ObjectTypefmi �Tig��i�n if the two types are equivalent or

�� n � m and for each i � n� T �
i �� Ti � and

�� each method type Tj in T is monotonic in MyType�

It follows from this de�nition that ObjectTypefmi �Tig��i�n has no proper subtypes if any of the
mi has a parameter of type MyType�

Notice that the only di�erence between matching and subtyping is the addition of the second
clause in the de�nition of subtyping� Thus if two object types are subtypes� they match� but not
vice�versa� However� if all of the method types are monotonic in MyType� then the two types match
i� they are subtypes�

DoubleNodeType is not a subtype of NodeType � because attachRight has a parameter of type
MyType� However� DoubleNodeType �!NodeType � In contrast� there is no di�culty with subtyping
in classes containing methods like the ShallowClone and DeepClone methods discussed earlier� since
MyType occurs only as the result type�

This new de�nition of subtypes for object types is based on the de�nition of subtyping for
recursive types in �AC	�� and on the de�nition in �BHJ����� as type expressions with MyType

can be interpreted as being implicitly recursively de�ned� The rules in that paper would actually
allow more types to be subtypes than can be determined with the above rule� The reason is that
the general rules given there allow arbitrary �unfolding� of recursively de�ned types� We do not
allow that here because of complications that would arise in typing expressions� It is possible to
strengthen the above de�nition by using the assumption MyType �!ObjectTypefmi �Tig��i�n to
prove T �

i �� Ti in the �rst part of the de�nition�
While other choices of subtyping rules for object types are possible� we have found that this

particular choice of rules is both simple and e�ective�

	 Evaluating the use of MyType

The net gains with the introduction of MyType are substantial� We can now write down the types
of methods in classes in such a way that they will automatically change as desired in subclasses�
We have also increased the expressibility of the language by making it possible to use inheritance to
de�ne subclasses �such as DoubleNode� which could not have previously been de�ned by inheritance�
When these new subclasses have binary methods� however� they may not give rise to subtypes�

We did not run into this mismatch between subclass and subtype earlier� because we were not
even allowed to write down subclasses when we wished to have binary methods� With the use of
MyType� we now can write such subclasses and make very e�ective use of them in real programs�

��

As indicated earlier� the paper �CHC	�� examined typing problems in object�oriented languages
by looking at a typed semantics of object�oriented languages� In that paper the authors provided
examples similar to the one shown here that show that subclasses do not always generate subtypes�
it also discussed replacing method types by subtypes in subclasses�

It is possible to restrict the use of MyType to only covariant positions �e�g�� result types of
functions� in order to ensure that subclasses always generate subtypes� Trellis Owl �SCB����
imposes essentially this restriction by imposing the requirement that a subclass is legal only if the
generated object type is a subtype of that of the superclass� Thus� while allowing subtyping on
method types in subclasses� it would not allow the creation of a subclass for a class with binary
methods�

However practical experience leads us to consider the support of binary method to be very
important� Moreover� since support for binary methods has no impact on the type correctness or
subtyping properties of programs or classes that do not contain binary methods� we see no useful
reason for banning contravariant occurrences of MyType�

Let us summarize where we are now in the development of a static type�checking system for
object�oriented languages� We have introduced the type expression� MyType� which is used in
methods to stand for the type of the object executing the method� The use of MyType allows us to
de�ne methods whose types change automatically in subclasses in order to provide more accurate
type information� When a method in a class is overridden in a subclass� its type may be changed
to a subtype of what it was in the superclass�

We introduced the notion of matching in order to capture more accurately the relation between
the types of objects generated by superclasses and subclasses� If class SC is a subclass of C then
the corresponding types are guaranteed to be in the matching relation� The rules for type checking
methods in classes allow us to assume self has type MyType and that MyType matches the object
type generated by the class� The relatively weak matching assumption on MyType ensures that
inherited methods continue to be type correct in subclasses� Assuming that MyType is the same
as the object type generated by the class can lead to typing problems in inherited methods in
subclasses�

Our de�nition of subtyping is more restricted than the de�nition of matching� If a class de�nition
contains any contravariant occurrences of MyType� in particular� if the class contains one or more
binary methods� subclasses will not generate subtypes�

Moreover� once we have determined that an object�s type matches another object type� we can
determine a type for the result of sending a message to the object by replacing all occurrences of
MyType in the method�s type by the object�s type� Thus it turns out that matching� not subtyping�
is the most relevant for determining the type of message sending�

The type system of our language is now signi�cantly more expressive than the simple type
system with which we started� In particular� we are now able to write the cloning methods which
caused us problems in section �� We can also now de�ne DoubleNode as a subclass of Node � as
desired earlier� However there remain a few subclasses we would like to write that are still out of
our reach because of typing restrictions� These include the circle color circle example from section
�� and other examples which seem to require covariant changes to the types of instance variables or
the parameters of methods in subclass de�nitions� The use of MyType took care of these examples
when the type being changed was that of the objects being de�ned in the class� In the next section
we introduce bounded type parameters� which will allow us to overcome these other problems as
well�

��

List�T� � ObjectType

function find�T�� Boolean�

procedure insert�T��

procedure delete�T��

function isEmpty��� Boolean�

���

end ObjectType�

Figure �
� List type function�

 Combining parametric polymorphism with matching

In this section we illustrate the extra exibility obtained by supporting a form of parametric
polymorphism that is similar to that provided in CLU�s parameterized clusters and Ada�s generic
packages�

��� Polymorphism and container classes

Polymorphism is very important for clean programming of a variety of problems� especially those
involving data structures called �container classes�� Container classes are those classes representing
collections of objects� usually of the same or related types�

A good example of a container class is a list of elements� The code for a particular list imple�
mentation is essentially the same� no matter what type of element is held in the list� Similarly the
interfaces vary only in the type of the element held in the list� As a result we can represent the type
of lists with List � a function from types to types� �See Figure �
�� We can create type expressions
representing lists of various types by simply applying the type function to the intended type of the
elements� Thus List�Int� represents the type of a list of integers� while List�Window� represents
the type of a list of windows�

��� Constraining polymorphism � the failure of subtyping

Some of these container classes� however� require the types of elements contained in the data
structure to support certain operations� For instance� a binary search tree will only work with
elements whose types support comparisons between elements� As another example� a data structure
representing a collection of objects on a computer screen may require each element to have a
bounding rectangle� How can we express this dependency in order to ensure that type functions
are applied only to the appropriate types�

Let us look at the case of binary search trees in order to get more insight into the problem�
In order to insert and �nd an element in a binary search tree we must be able to compare that
element with other elements of the type� In Figure �� we present an object type� Comparable �
which supports the necessary comparison operations� Any type of element that can be stored in
a binary search tree must support at least these operations� How can we use this to restrict the
types to which the type function� BinarySearchTree � is applied�

We might expect that any type that is a subtype of Comparable would be acceptable� However�
because Comparable contains method types that include contravariant occurrences of MyType �i�e��

�

Comparable � ObjectType

function equal�MyType�� Boolean�

function greaterThan�MyType�� Boolean�

function lessThan�MyType�� Boolean�

end ObjectType�

Figure ��� The type Comparable �

binary methods�� no non�trivial subtypes of Comparable exist�

��� Match�bounded polymorphism

Interestingly� matching allows us to express exactly the types that we are interested in� If T �!Comparable �
then T must have equal � greaterThan � and lessThan methods� each with function types that ex�
pect an argument of the same type as the receiver� and return Booleans� This is exactly what
we want� This mechanism of restricting type parameters using matching is called match�bounded

polymorphism or bounded matching�
The de�nitions of the type functions BinSearchTreeType and BinTreeNodeType in Figure �� pro�

vide examples of the use of match�bounded polymorphism in the de�nition of a function from types
to types� The type Top which serves as the upper bound for the type parameter in BinTreeNodeType
is a built�in type that every other type matches� The corresponding class provides methods like
ShallowClone and equal which are implicitly inherited by every other class of the language�

Figure �� shows part of the de�nitions of a node class and binary search tree class� both of which
are parameterized by the types of elements they contain� �The node class is also parameterized by
an initial value for the node value� This can be treated as syntactic sugar for a function returning
a class�� The need for the constraint on the type parameter T in BinSearchTree is illustrated by
the expression elt �equal�current �getValue���� Because T �!Comparable and elt has type T � elt is
guaranteed to have a method equal with the necessary typing�

A more complicated example can be constructed of an ordered linked list� which is parameterized
both by the type of value it contains �which is required to match Comparable� and by the type of
node it is composed of� a type that is required to match NodeType �the type of objects generated
by the Node class from the previous section�� For instance� the user can instantiate the ordered
list with an object type supporting integers with the usual order and with type NodeType in order
to obtain a singly�linked list of integers� Alternatively� one can instantiate it with an object type
representing strings and with the type DoubleNodeType in order to obtain a doubly�linked list of
strings� �See �BSvG	�� for details of the example��

��� History of matching and match�bounded polymorphism

Bounded polymorphism �using subtyping rather than matching� was introduced in �CW���� That
paper also included a very extensive discussion of types and subtypes in object�oriented languages�
The failure of bounded polymorphism using subtyping to capture the constraints needed in examples
like our binary search tree example above was �rst pointed out in �CCH��	� and �Hut���� In
�CCH��	�� the authors invented a generalization of bounded polymorphism� called F�bounded
quanti�cation� which provided the correct constraints on polymorphism� F�bounded quanti�cation

��

TypeFunction BinSearchTreeType�T �� Comparable� �

ObjectType

function find�T�� Boolean�

procedure insert�T��

function isEmpty��� Boolean�

end ObjectType�

TypeFunction BinTreeNodeType�T �� Top� �

ObjectType

function getValue���T�

procedure setValue�T��

function getLeft���MyType�

procedure setLeft�MyType��

function getRight���MyType�

procedure setRight�MyType��

end ObjectType�

Figure ��� Binary search tree type functions�

is a generalization of bounded quanti�cation using subtyping in which the bounded variable is
allowed to appear in the bound� Using this in languages supporting recursive types in place of
MyType provides the same functionality as match�bounded polymorphism�

For example we can de�ne

TypeFunction CompFcn�T� � ObjectType

function equal�T�� Boolean�

function greaterThan�T�� Boolean�

function lessThan�T�� Boolean�

end ObjectType�

Then� using F�bounded quanti�cation� we can rewrite the bound on BinSearchTreeType as

TypeFunction BinSearchTreeType�T �� CompFcn�T��

Notice that the bounded variable� T � occurs in the upper bound� CompFcn�T �� Unfolding rules
of recursive types can then be used to show that the expected �recursive� object types satisfy the
constraint�

The notion of matching given here and match�bounded polymorphism were introduced in
�Bru	
� as a simpler way of expressing the constraints of F�bounded quanti�cation in order to
specify the semantics of typed object�oriented languages� That paper also pointed out the useful�
ness of matching in type checking classes and subclasses� As pointed out in �AC	��� a somewhat
better encoding for matching can be obtained through the use of higher�order subtyping �PS	���

A concept similar to match�bounded polymorphism seems to have been invented independently
by several language designers� The term matching was introduced in �BH	�� for a de�nition that
is very similar to that of F�bounded quanti�cation� This construct was used in the distributed

��

class BTreeNode�T �� Top� v�T�

var

value � v� T�

left � nil� MyType�

right � nil� MyType

methods

function getValue��� T

begin

return value

end�

procedure setValue�newValue� T� ���

function getLeft��� MyType

begin

return left

end�

procedure setLeft�newLeft� MyType�

begin

left �� newLeft

end�

function getRight��� MyType ���

procedure setRight�newRight� MyType� ���

end class�

class BinSearchTree�T �� Comparable�

var

current � nil� BTreeNodeType�T��

root � nil� BTreeNodeType�T��

methods

function find�elt� T�� Boolean

begin

if root �� nil then

��� if elt�equal�current�getValue��� then ���

end�

procedure insert�newElt� T� ���

function isEmpty��� Boolean

begin

return �root � nil�

end

end class�

Figure ��� BinSearchTree classes�

��

language Emerald �BHJL��� BHJ���� Hut���� The language School ��RIR	��� also constrains
polymorphism with a mechanism similar to F�bounded quanti�cation�

Interestingly� the type restrictions obtained by match�bounded polymorphism are equivalent to
those obtained by mechanisms for restricting type parameters in ADT�style languages supporting
polymorphism� like CLU and Ada� In Ada� for instance� one would write�

generic T with

function equal�T�T�� Boolean�

function lessThan�T�T�� Boolean�

function greaterThan�T�T�� Boolean�

package BinSearchTree ��� end BinSearchTree�

While the functions are written as functions of two parameters here �rather than the single
parameter for the object�oriented style�� the restrictions on the admissible types are equivalent�
This provides further evidence that matching is a very natural notion in object�oriented languages�
In fact the object�oriented language Theta �DGLM	�� DGLM	
� uses a similar notation to express
restrictions on type parameters that are equivalent to match�bounded polymorphism�

�� Solutions to Ei�els covariant type problems

The object�oriented language Ei�el allows covariant changes to types of instance variables and to
both parameter and result types of methods in subclasses� Supporters of Ei�el argue that allowing
these covariant changes is essential in order to support exible program development� However� as
we have seen� this permits the introduction of type errors�

��� Ei�el�s system validity check

The Ei�el language de�nition �Mey	�� attempts to compensate for these problems by mandating a
link�time �system validity check� that performs a dataow analysis of the complete �nal program
at link time in order to identify those expressions that are at risk for unsafe method calls� Un�
fortunately� systems that depend on a dataow analysis for type safety are fragile� as potentially
problematic code can go undetected for a long while until a �dangerous� method call is made in a
new or modi�ed class�

While a detailed algorithm for the system validity check can be found in �Mey	��� it has ap�
parently never been implemented� and is not available in any of the existing commercial Ei�el
compilers� As a result� it is unknown how conservative �or expensive� this system validity check is�

��� Solving covariance problems with match�bounded polymorphism

We prefer systems which catch type errors at compile time� rather than postponing their discovery
until link time or run time� Cook� in �Coo�	�� presented several suggestions on how to �x the
problems with Ei�el� An important part of these suggestions is the use of bounded quanti�cation
to replace the uses of covariance in instance variable and parameter types� in particular� those
occurrences arising from uses of Ei�el�s like x construct�

In section �� we provided a solution to the problem of covariant changes to parameter and
instance variable types for the cases when the types involved can be represented using MyType� In

��

those cases the type represented by MyType changes automatically in subclasses� Our assumptions
on the meaning of MyType in type checking methods ensure that this implicit covariant change to
parameter types causes no type problems� In the rest of this section we show how to use match�
bounded polymorphism to replace the apparent need for covariant changes when types other than
MyType are required to change�

We revisit the Circle ColorCircle example discussed in section
� and presented in Figure 	� in
order to see how to use match�bounded polymorphism to model this in a type�safe way� Recall that
Circle has a getCenter method that returns a point� while we wished the same method to return a
color point in the subclass� ColorCircle � Subtyping allowed us to change the return type as desired�
but we later ran into di�culty because we were not allowed to change the instance variable� center �
from type PointType to ColorPointType in the subclass�

Using match�bounded polymorphism� we can work around this by adding a type parameter
that is required to match PointType � This type parameter represents the type of the center of the
circle� See the class PCircle in Figure ��� Now any subclass of PCircle can instantiate the type
variable by any type that matches PointType � solving our problem� though at the cost of requiring
the programmer to plan ahead for subsequent changes in subclasses�

A new color circle can be created by evaluating new PColorCircle�ColorPointType� cpt� where
cpt is a color point that is to be the location of the center of the circle� Thus the addition of
match�bounded polymorphism has allowed us to get around the di�culties caused by the restric�
tions on changing instance variable types� Because the bodies of the methods of PCircle are type
checked under the assumption that CenterType �!PointType � they are guaranteed to work when
the subclass is instantiated with ColorPointType �

Our second example� due to Shang �Sha	��� is presented in Figure �	� It is typical of those given
to illustrate the need for covariant subtyping on parameter types in subclasses� In this example�
an Animal can eat any kind of food� while an Herbivore eats only plants�

Because the parameter of eat changes in a covariant way� this is an illegal subclass according
to the typing rules with which we have been working� In fact� it is easy to code up an example
using these de�nitions that would type check correctly according to the Ei�el rules� yet be unsafe� if
Herbivore were allowed to be a subclass of Animal � Nevertheless this seems like an obvious change
in parameters for the subclass because we clearly wish to place more restrictions on the parameter
in the subclass� This covariant change in parameters is characteristic of many desired subclass
relationships in object�oriented programming languages�

Because covariant changes to parameters can cause type�checking problems� we would like to
avoid this de�nition of Herbivore� To do this we need to analyze more carefully the modeling which
is reected in these classes�

While for each item of type FoodType there may be a kind of animal that can eat that food�
virtually all kinds of animals have some dietary restrictions� Cows eat grass and hay� but do not
eat meat� Humans eat a variety of plants and animals� but do not typically eat either grass or hay�
Thus while it is proper to conclude that any item of FoodType is potentially edible by some animal�
it would be incorrect to conclude that any� let alone all� food items will be edible by all animals�
As a result� the Animal class de�nition� particularly with the functionality assigned to eat � does
not really accurately reect the situation to be modeled� A more realistic model of the class would
allow us to change the parameter type for the eat method for each particular kind of animal�

The polymorphic PAnimal class in Figure �� is parameterized over the type of food eaten by
the animal� Match�bounded polymorphism has been used to impose a bound of FoodType on the

�	

class PCircle�CenterType �� PointType� OrigPoint� CenterType�

var

center �� OrigPoint� CenterType�

radius �� � Integer

methods

function getCenter���CenterType

begin

return center

end�

procedure changeCenter�newCenter�CenterType�

begin

center �� newCenter

end�

procedure move�dx�dy� Integer�

begin

center�move�dx�dy�

end�

���

end class�

class PColorCircle�CenterType �� ColorPointType� OrigPoint� CenterType�

inherits PCircle�CenterType� OrigPoint�

var

color �� red� ColorType

methods

function getColor���ColorType

begin

return color

end�

procedure setColor�newColor�ColorType�

begin

color �� newColor

end�

���

end class�

Figure ��� Polymorphic Circle classes�

�

class Animal

var

���

methods

procedure eat�meal� FoodType�

���

end class�

class Herbivore inherits Animal modifying eat

var

���

methods

procedure eat�meal� PlantType� 		 illegal change of type

���

end class�

Figure �	� Animal and herbivore classes

type parameter� where FoodType might include methods returning the weight and number of calo�
ries that would be extracted if the item is consumed� Notice that in the �parameterized� subclass�
PHerbivore� we have replaced the upper bound of FoodType by PlantType � where PlantType is an ob�
ject type that must match FoodType � The requirement that PlantType match FoodType comes from
the fact that PHerbivore�MyFoodType� is de�ned to be a subclass of PAnimal�MyFoodType�� But
PAnimal�MyFoodType� is only well�de�ned ifMyFoodType �!FoodType � If PlantType �!FoodType

and MyFoodType �!PlantType then transitivity implies that MyFoodType �!FoodType �
As an example� suppose there is an object type Vegetable�!PlantType � Then we can create

the class PHerbivore�Vegetable� which generates objects that can eat only vegetables� Note that
PHerbivore�Vegetable� is a legal subclass of PAnimal�Vegetable�� since the corresponding methods
have exactly the same types� though the types of the objects they generate are not in the subtype
relation� On the other hand� PHerbivore�PlantType� does not inherit from PAnimal�FoodType�
and hence is not its subclass�

The method eat of the parameterized PAnimal class will be type checked under the assumption
that MyFoodType �!FoodType � since that is all that is known about the parameter type from its
declaration� Notice that this is exactly the same kind of assumption we make about MyType when
type checking methods in classes� What we have done here with parameterized classes is to hand�
code the same kind of exibility that we get for free with self and MyType� While this takes more
work on the programmer�s part� we get the e�ect of covariance while retaining type safety � clearly
something of value�

��� Meyer�s solution� Banning polymorphic catcalls

Bertrand Meyer� the designer of Ei�el� has rejected this sort of solution to the covariance typing
problems in Ei�el� because it requires the programmer to plan ahead in order to accommodate
subclasses� That is� the designer of the Animal class must know in advance to make the class
polymorphic in the food type or the class representing herbivores will not be de�nable as a subclass�

�

class PAnimal�MyFoodType �� FoodType�

var

���

methods

procedure eat�meal� MyFoodType�

���

end class�

class PHerbivore�MyFoodType �� PlantType�

inherits PAnimal�MyFoodType� modifying eat

var

���

methods

procedure eat�meal� MyFoodType� 		 Same type as in PAnimal�

		 Declaration need not be repeated if no change in body�

���

end class�

Figure ��� Polymorphic animal and herbivore classes

In the fall of �		�� Meyer �Mey	�� proposed a di�erent solution to the covariance typing prob�
lems� His solution was to identify and ban what he called polymorphic catcalls� While this notion
is too complex to be de�ned here� this proposal was intended to bar particular kinds of message
sends to objects whose type was not known exactly�

To illustrate how this proposal would preserve type safety� let us return to our breakit procedure
in Figure �� which shows that subclasses need not be subtypes� In that example the message
attachRight�n� � was sent to n� � where n� was a parameter declared to have type NodeType �
The problem arose when the object corresponding to n� actually had type DoubleNodeType � We
avoided this problem by not allowing DoubleNodeType to be a subtype of NodeType � It failed to
be a subtype because attachRight of NodeType was a binary method

Meyer�s new proposal would avoid the problem as follows� He would label n� �attachRight�n� �
a catcall since the type of the formal parameter of attachRight is changed in a covariant way in a
subclass of Node� The receiver n� would be termed polymorphic since the exact type of its value is
unknown� This follows since it is a formal parameter and hence any element of a subclass of Node
may be used as a parameter� Hence the entire expression is considered a polymorphic catcall and
thus is illegal�

An interesting part of the de�nition is that the original expression would not be considered a
catcall until a subclass of Node is declared� Thus the procedure breakit would be legal in an Ei�el
program unless and until a subclass is de�ned� Meyer argues that an incremental compiler could
determine this change in status at no great cost�

Thus in the solution proposed earlier in this paper� the procedure breakit is legal� but it may
only be applied to parameters of type NodeType �since NodeType has no subtypes�� We could also
use match�bounded polymorphism to rewrite the procedure as in Figure ��� This is still type safe�
but is more exible in that it would allow calls of the form nobreakit�SomeNodeType�nd� �nd� �

�

procedure nobreakit�T �� NodeType� n� n�� T��

begin

n�attachRight�n��

end

Figure ��� A type safe rewrite of breakit using match�bounded polymorphism�

as long as nd� and nd� both have type SomeNodeType � In particular it could be called with
DoubleNodeType and two actual parameters of type DoubleNodeType �

In Meyer�s proposal� the original breakit would be legal only as long as Node had no subclasses�
When the �rst subclass was de�ned� the procedure would become illegal and have to be rewritten
or eliminated�

We have several concerns with Meyer�s new proposal�

�� The de�nition of polymorphic catcall �and related restrictions� is very complex� and would
be di�cult for most programmers to understand in detail�

�� We are not completely con�dent that this proposal will actually solve all of the type problems
of Ei�el� The original proposal did not take care of some problems arising from changes to
instance variables in subclasses� While the rules have since been corrected� the complexity of
the rules and the lack of a proof of correctness leaves room for doubt�

�� The proposal may be too conservative� A receiver of a message is polymorphic if it can evaluate
to an object of more than one class� In most large systems subtyping and inheritance are
used a great deal� and this may lead to a large number of polymorphic expressions to which
catcalls may not be sent�

One of Meyer�s criteria for a good solution to the covariant subtyping problem is that it not
require the programmer to plan in advance for future changes in parameters that might be required
in subclasses� Thus he would argue against the use of type parameters in the previous subsection
in order to write the Animal and Herbivore classes� because the programmer would have to realize
when writing the Animal class that the parameter to the eat method might need to be changed in
the subclass�

However� Meyer�s solution su�ers from a similar problem in that if a subclass is de�ned� it will
invalidate the existing Animal code� forcing it to be rewritten�

Only experience with Meyer�s polymorphic catcall rules will determine whether or not there
is any validity to these concerns� Meanwhile� the type system discussed in this paper provides
an alternative solution to the covariant typing problems of Ei�el� albeit one that requires the
programmer to plan ahead�

�� Replacing subtyping with matching

You know you have achieved perfection of design� not when you have nothing more to
add� but when you have nothing more to take away� Antoine de Saint Exupery

�

At this point we have an extremely exible static typing system for object�oriented languages�
Method types may be replaced by subtypes in subclasses� MyType supports automatic updating of
parameter types in important special cases� while a combination of MyType and bounded matching
provides support for safe uses of covariance in parameter types� While contravariant occurrences
of MyType do cause a loss of subtyping� the matching relation �which is preserved by subclasses�
appears to be more important in type checking message sends and in restricting polymorphic types�
Most important of all� we have a type system that is provably type safe �see �BSvG	�� for formal
details of a type system� an operational semantics� and a proof of type safety for a language similar
to what has been described here��

Not surprisingly� this has come at some increased cost in complexity� While a strong case can
be made that any language �object�oriented or not� should support some version of bounded poly�
morphism� the bounds must be speci�ed using the new relation� matching� rather than subtyping�
More troubling� the di�erence between subtyping and matching on object types is very subtle�
depending only on the absence of contravariant occurrences of MyType�

When faced with such a system� it is reasonable to look for ways to reduce complexity� The
existence of two relations as similar as subtyping and matching raises the question of whether both
are really necessary� We were forced to introduce matching as a way of capturing the relation
between types of objects generated by superclasses and subclasses� This notion proved to be
important in type checking method bodies and in de�ning the set of types to which a parameterized
type or class could be applied� A case can be made that matching is more natural than subtyping
for object types because it is simpler �no need to worry about contravariant occurrences ofMyType��
An argument could also be made that most object�oriented programmers would� in fact� give the
de�nition of matching if asked to de�ne subtyping for object types in such a system�

In the rest of this section we introduce a new experimental typing system for object�oriented
languages that drops subtyping entirely in favor of matching� To accomplish this we introduce one
new construct involving matching in order to recapture some of the exibility of subtyping�

���� Simplifying matching

In section
 we eased the restrictions on changing types of methods in subclasses to replace the
types of methods by subtypes� While this provided us with a somewhat more exible type system�
it is interesting to note that none of the examples examined once we introduced MyType actually
took advantage of this exibility� The use of MyType took care of most of the desired exibility�
and the other examples where covariance in parameters or instance variables seemed to be needed
were not helped by allowing subtyping of method types� Instead� they required the introduction
of bounded matching to attain the exibility needed� Thus� it is reasonable to wonder whether it
was really necessary to allow methods in subclasses to have types that are subtypes of those in the
superclass�

As expected� the notion of matching will play a key role in replacing subtyping� In section ��
matching was de�ned in terms of subtyping of corresponding method types� Since we now wish
matching to be primitive� we give a new more restrictive de�nition of matching� We de�ne

ObjectTypefmi �Tig��i�k�!ObjectTypefmi�Tig��i�n i� n � k�

Thus one object type matches another if the �rst can be obtained by adding more methods to
the second� No method types may be changed in object types that match� �Of course� as before�
occurrences of MyType mark places where types automatically change meaning��

���� Replacing subtyping by hash types

All previous uses of subtyping in parameters that are of object type could be replaced by poly�
morphic functions using bounded matching� Thus a function f to be used with objects of any type
that matches type Window could be written�

function f �W �!Window � w � W � ���

Unfortunately� this notation is a bit heavy� and programmers are not likely to enjoy passing around
type parameters everywhere that they formerly used subtyping�

To remedy this we introduce a new type constructor� If T is an object type� then !T will also
be a type� An element will have type !T if it has any type that matches T � That is� if a has type
S and S �!T then a also has type !T� We also have a form of subsumption with !�types� If
S �!T and a has type !S then a also has type !T� �A similar kind of notation occurs in �Car��b��
where power types are introduced to stand for the collection of types which are subtypes of a given
type� Ada 	� �Int	�� also includes a similar notation� written T �Class � to designate the collection
of types which are subclasses of T ��

We can now rewrite the declaration of the function f above as follows�

function f �w � !Window � ���

Thus f can be applied to any value with a type that matches Window � Note that this o�ers at
least the exibility of subtyping� In fact� if Window contains any binary methods� it will have no
non�trivial subtypes� while there are many types that would match it� While only object types can
be annotated with ! in order to get the e�ect of subtyping� in most object�oriented languages� only
object types and simple types are available to be passed as parameters� �If the language does not
interpret record types as degenerate object types� one could de�ne a notion of matching for record
types in which matching is simply record extension��

We have emulated subtyping of function parameters with !�types� but what about the other
important use of subtyping� making assignments to variables� This case is more di�cult in that
this use cannot be easily expressed with bounded matching� However� we can take our !�types
seriously� and use them to provide types for variables that are intended to hold values of multiple
types� If x � !T is a variable declaration and e� S for S �!T � then x �� e will be type�correct�

We emphasize that this is no longer an abbreviation for a use of bounded matching� It is an
entirely new type construct��� The introduction of !�types makes it easier for a programmer to
express more precisely his her intentions�

For example� suppose that we de�ne the type function List as in Figure �
� In a language with
subtyping� if we applied List to a type S � the list could also hold elements of any subtype of S �
Of course� if S has binary methods� it will not have non�trivial subtypes� and we could not have a
heterogeneous list of these elements� The point is that the choice of whether the list is homogeneous
or heterogeneous is determined not by the programmer� but depends only on whether or not S has
a binary method�

In the language we propose here without subtyping� applying List to type S would provide the
interface for a homogeneous list� all of the elements would have exactly type S � We can also provide
a list de�nition using !�types that will give us a heterogeneous list� Thus a language with !�types

��For those familiar with existential types� we note that �T can be encoded as �t��T� t�

�

provides the programmer with much greater expressiveness by providing the capability for either
homogeneous or heterogeneous data structures depending on whether the programmer chooses to
use regular types or hash types�

In Appendix A we provide an extended example of the de�nition of a heterogeneous list in
a language with !�types� As in the example� one would normally wish to restrict the elements
of heterogeneous data structures to have types which match a �xed type �in this case� the type
rect type�� This is generally necessary to determine the collection of methods that can be applied
to all elements of the data structure�

���� Hash types are not compatible with binary methods

This extra power and exibility does not come entirely for free� In fact� there is one extra compli�
cation in sending messages that correspond to binary methods� If all we know about the type of an
expression is that it matches a particular type� then we cannot send it a message which corresponds
to a binary method� This is a necessary consequence of the need in a binary method to have a
parameter with exactly the same type as the receiver� If one doesn�t know the exact type of the
receiver� you certainly won�t know what type of value to provide as the parameter�

For example� recall that in our discussion of typing in section �� we determined that if o� S
and S �!ObjectType fm� Tg then the type of o�m would be T �S�MyType �� It was important for
that rule that we knew the exact type of o �at least up to subtype�� Now what happens if o has
type !S� Since we only know o�s type up to matching� we cannot just blindly apply the usual
type�checking rule� However it can be shown that if T has no contravariant occurrences of MyType�
o�m can be given type T �!S�MyType �� If T does have contravariant occurrences of MyType �e�g��
it is a binary method�� then we cannot statically determine the type of o�m �

This failure to determine a type for the message send of a binary method should not be a
surprise� We illustrate with the Node example from section �� If we only know that n� has
type !NodeType and that n� has type DbleNodeType � then we cannot determine whether or not
n� �setPrev�n� � is legal� It will only be legal if the type of the value of n� is exactly DbleNodeType �
Any other type matching NodeType would not result in a well�typed expression�

One practical consequence is that we can generally only send non�binary messages to elements
of a heterogeneous data structure �i�e�� one whose value �elds are !�types� unless the language
provides a type�case or similar statement to help discriminate the types at run�time� Note however
that the existence of binary methods in a type S does not prevent the sending of non�binary
messages to objects of type !S�

While forbidding binary messages to be sent to !�types might seem to be a major handicap�
we have found that it proves not to be in practice� The �rst reason is that� unlike the case with
homogeneous data structures� one rarely wants binary methods when dealing with heterogeneous
data structures� In the heterogeneous list example in Appendix A� for example� the gt and eq

methods both take parameters of type !rect type� It would not make sense for them to take
parameters of type MyType or !MyType since then you might not be able to compare two elements
of the list with di�erent types� even though both match rect type �

A second reason for not worrying about this limitation is that if the base type had binary
methods which were used in the data structure� we could not obtain heterogeneous data structures
at all in the original language with subtyping� A good example of this is an ordered list� which
depends on the base type have binary methods for the ordering� As a result we still have more

�

exibility in this new system� We just have to be more careful with binary methods than with
those with no contravariant occurrences of MyType�

Finally� in the case where binary methods are needed� programmers will need to use explicit
bounded matching rather than !�types� This way the programmer can ensure that the parameters
are of the same type as the receiver� While this is a little less compact than the ! types� it still
gives the same avor�

���� Evaluation

A possible disadvantage of the system described above is that we do not allow the types of methods
to be explicitly changed in subclasses� �As before� they implicitly change because of occurrences
of MyType�� While we believe that the constructs included in this language do provide su�cient
functionality for most purposes� it is possible to generalize the de�nition of matching in order to
support the change of methods in subclasses� In order to do this it is necessary to de�ne a matching
relation on function types� since the types of methods are functions�

This can be done in a way that provides more exibility in de�ning subclasses� but we remain
unconvinced that this provides enough bene�t to be worth the resulting complexity� As with the
examples provided earlier in this paper� most examples we have looked at can be handled easily
with a combination of the simple matching presented in this section� MyType� and match�bounded
polymorphism�

Another possible disadvantage of this language design is that it forces the programmer to mark
those parameters and variables in a program that may later need to take values whose types only
match the given types� This requirement to plan ahead is indeed a negative point in this design�
However� it is worth pointing out that� despite the hype to the contrary� it already takes great care to
design classes that can be successfully inherited from� This helps explain the common wisdom that
good class libraries are more helpful in code reuse than libraries in traditional imperative languages�
but good class libraries are much harder to design than libraries in traditional languages� Thus we
would argue that good object�oriented design currently takes signi�cant planning ahead for change
on the part of the programmer� As a �nal justi�cation� we note that the designers of Ada 	� made
a similar decision to require the programmer to mark those variables and parameters which are
allowed to hold values whose types are subtypes of a given type�

In summation� the language described in this section is considerably simpler than the language
presented in the earlier sections of this paper� In spite of the elimination of subtyping from the
language� the use of !�types and bounded matching seems to provide a language signi�cantly
more expressive than the object�oriented languages in common use today� In particular� all of the
programs discussed earlier in this paper can be statically typed in this new language� None of the
�nal programs presented took advantage of subtyping in any way�

Leaf Petersen and the author have designed and implemented a language� LOOM� which corre�
sponds to the design given in this section� A technical report is currently being written which will
describe the language in more detail� The paper �Pet	�� presents an overview of the language and
describes a module system that provides greater support for programming in the large� Our use of
LOOM in working out many examples leads us to believe that it combines an appealing simplicity
with su�cient expressive power to model most situations likely to arise in practice�

�

�� Conclusions and related work

In this paper we sketched several useful modi�cations to the simple type�checking systems of object�
oriented languages like C��� Java� and Object Pascal� These included allowing method types
to be replaced by subtypes in subclasses� introducing a name� MyType� for the type of self �
supporting automatic updating of parameter types in important special cases� and introducing
match�bounded polymorphism as a means of expressing the desired restrictions on type parameters�
These mechanisms provided us with a more expressive type system that allowed us to write a large
number of subclasses that� while intuitively correct� were ruled out by the simple type system�
Moreover� one can actually prove that this system is type safe� meaning that any program which
type checks is guaranteed not to have run�time type errors� A more formal description of such a
language is given in �BSvG	���

We believe that these constructs should become increasingly common in new or revised versions
of statically�typed object�oriented programming languages� For instance� we have formulated a
proposal to add MyType and match�bounded polymorphism to Java�

In the last section of this paper� we introduced a more recently developed type system that uses
matching to replace subtyping� In this system subtyping �and the subsumption rule� were dropped�
and the original version of matching was replaced by a much simpler relation in which methods
could only be added in matching types� with no �explicit� changes allowed to the existing method
types� �Of course the method bodies themselves could be overridden in subclasses� it is only the
types which are frozen�� While very simple� this type system� which also included match�bounded
polymorphism� allowed us to easily express all of the di�cult examples included in this paper that
caused problems in the simple type system�

Our current personal choice for a type system for statically typing object�oriented languages is
this pure matching language� We believe that it combines simplicity with the expressiveness to solve
many of the most di�cult typing problems that arise in object�oriented languages� The !�types
in this language also allow the programmer to make an explicit choice between homogeneous and
heterogeneous data structures� something generally not available in languages in which subtyping
cannot be turned o��

The only negatives that arise in this language�s use are the result of tradeo�s that may be worth
taking on other grounds� While it is necessary to mark those formal parameters and variables
that are capable of holding values of matching types� this provides information to the compiler
that may be useful in producing optimized code� In particular� this may result in paying the extra
implementation costs of subtyping only in those places where it is actually needed� It does� however�
require the programmer to plan ahead as to where this kind of exibility is desired� A restriction
is that binary messages cannot be sent to objects whose only known types are !�types�

The contents of this paper are based on the work of researchers working in type theory and
semantics as well as language designers� In the body of this paper we attempted to provide fairly
complete references to the ideas discussed here� but there were many important contributions that
we did not have room to discuss� The paper �DT��� presents an interesting survey of the state of
type theory in object�oriented languages as of �	������ The collection �GM	
� contains many of
the important early contributions to the theory of object�oriented programming languages� The
forthcoming book �AC	�� provides a more uni�ed approach to the semantics and type theory of
object�oriented programming languages� Other important sources of information in this area are
the proceedings of the annual ECOOP �European Conference on Object�Oriented Programming�

�

and OOPSLA �Object�Oriented Programming� Systems� Languages� and Applications� conferences�
The Journal of Function Programming published a special issue in �		
 on the theory of object�
oriented languages which contains the papers �Aba	
� Bru	
� PT	
�� while the journal Theory and
Practice of Object�oriented Systems �TAPOS� will publish a special issue on types in object�oriented
languages in late �		��

Acknowledgements� Thanks to Luca Cardelli	 Peter Wegner	 Tony Simons and the anonymous

referees for very helpful comments and suggestions on earlier drafts of this paper� Andrew Black

made detailed comments on successive drafts which greatly improved the exposition� Special thanks

to Robert van Gent	 Angela Schuett	 and Leaf Petersen	 whose collaborative e
orts in language

design led to a better understanding of the issues of static typing in object�oriented languages� This

paper was written in part while the author was in residence at the Newton Institute for Mathematical

Science at the University of Cambridge� I thank the institute and its sta
 for their hospitality and
support during my stay�

References

�Aba	
� Martin Abadi� Baby Modula�� and a theory of objects� Journal of functional pro�

gramming�
��
	����� �		
�

�AC	�� Roberto Amadio and Luca Cardelli� Subtyping recursive types� ACM Transactions

on Programming Languages and Systems� ���
���������� �		��

�AC	�� Martin Abadi and Luca Cardelli� On subtyping and matching� In Proceedings ECOOP
��� pages �
������ �		��

�AC	�� Martin Abadi and Luca Cardelli� A Theory of Objects� Springer�Verlag� �		�� to
appear�

�AG	�� Ken Arnold and James Gosling� Java� Addison Wesley� �		��

�BCC�	�� Kim B� Bruce� Luca Cardelli� Giuseppe Castagna� The Hopkins Objects Group�
Gary T� Leavens� and Benjamin Pierce� On binary methods� Theory and Practice of

Object�Oriented Systems� �		�� to appear�

�BDMN��� G�M� Birtwistle� O��J� Dahl� B� Myhrhaug� and K� Nygaard� SIMULA Begin� Aur�
bach� �	���

�BH	�� A� Black and N� Hutchinson� Typechecking polymorphism in Emerald� Technical
Report CRL 	� � �Revised�� DEC Cambridge Research Lab� �		��

�BHJ���� A� P� Black� N� Hutchinson� E� Jul� H� M� Levy� and L� Carter� Distribution and
abstract types in Emerald� IEEE Transactions on Software Engineering� SE����������
��� �	���

�BHJL��� A� Black� N� Hutchinson� E� Jul� and H� Levy� Object structure in the Emerald
system� In Proc� ACM Symp� on Object�Oriented Programming� Systems	 Languages	

and Applications� pages ������ October �	���

	

�BP	�� Kim B� Bruce and Leaf Petersen� Subtyping is not a good �match� for object�oriented
languages� Technical report� Williams College� �		�� to appear�

�Bru	
� K� Bruce� A paradigmatic object�oriented programming language� design� static
typing and semantics� Journal of Functional Programming�
������������ �		
� An
earlier version of this paper appeared in the �		� POPL Proceedings�

�BSvG	�� Kim B� Bruce� Angela Schuett� and Robert van Gent� PolyTOIL� A type�safe poly�
morphic object�oriented language� extended abstract� In ECOOP ��� pages ������
LNCS 	��� Springer�Verlag� �		�� A complete version of this paper with full proofs
is available via http� www�cs�williams�edu �kim �

�Car��a� L� Cardelli� A semantics of multiple inheritance� Information and Computation�
���������
� �	��� Special issue devoted to Symp� on Semantics of Data Types	

Sophia�Antipolis �France�� �	�
�

�Car��b� L� Cardelli� Structural subtyping and the notion of powertype� In Proc �th ACM

Symp� Principles of Programming Languages� pages ����	� �	���

�CCH��	� P� Canning� W� Cook� W� Hill� J� Mitchell� and W� Oltho�� F�bounded quanti�cation
for object�oriented programming� In Functional Prog� and Computer Architecture�
pages �������� �	�	�

�CDG���� L� Cardelli� J� Donahue� L� Galssman� M� Jordan� B� Kalsow� and G� Nelson� Modula�
� report� Technical Report SRC���� DEC systems Research Center� �	���

�CHC	�� William R� Cook� Walter L� Hill� and Peter S� Canning� Inheritance is not subtyping�
In Proc� ��th ACM Symp� on Principles of Programming Languages� pages ��������
January �		��

�Coo�	� W�R� Cook� A proposal for making Ei�el type�safe� In European Conf� on Object�

Oriented Programming� pages ������ �	�	�

�CP�	� W� Cook and J� Palsberg� A denotational semantics of inheritance and its correct�
ness� In Proc� ACM Conf� on Object�Oriented Programming� Systems	 Languages

and Applications� pages
���

� �	�	�

�CW��� L� Cardelli and P� Wegner� On understanding types� data abstraction� and polymor�
phism� Computing Surveys� ���
��
������� �	���

�DGLM	
� Mark Day� Robert Gruber� Barbara Liskov� and Andrew C� Meyers� Abstraction
mechanisms in Theta� Technical report� MIT Laboratory for Computer Science�
�		
�

�DGLM	�� Mark Day� Robert Gruber� Barbara Liskov� and Andrew C� Meyers� Subtypes vs�
where clauses� Constraining parametric polymorphism� In Proc� ACM Symp� on

Object�Oriented Programming� Systems	 Languages	 and Applications� pages ����
���� �		��

��

�DT��� S� Danforth and C� Tomlinson� Type theories and object�oriented programming�
ACM Computing Surveys� �������	���� �	���

�GM	
� Carl A� Gunter and John C� Mitchell� Theoretical Aspects of Object�Oriented Pro�

gramming� MIT Press� Cambridge� MA� �		
�

�GR��� A� Goldberg and D� Robson� Smalltalk���� The language and its implementation�
Addison Wesley� �	���

�HJW	�� Paul Hudak� S� Peyton Jones� and Philip Wadler� Report on the programming lan�
guage Haskell� a non�strict purely functional language �version ����� SIGPLAN No�

tices� ������ May �		��

�HMM��� R� Harper� D�B� MacQueen� and R� Milner� Standard ML� Technical Report ECS�
LFCS������ Lab� for Foundations of Computer Science� University of Edinburgh�
March �	���

�Hut��� N� Hutchinson� Emerald� An object�oriented language for distributed programming�
PhD thesis� University of Washington� �	���

�Int	�� Intermetrics� Ada � Reference Manual	 version ���� �		��

�KMMPN��� Bent Bruun Kristensen� Ole Lehrmann Madsen� Birger Moller�Pedersen� and Kristen
Nygaard� The Beta programming language� In Bruce Shriver and Peter Wegner�
editors� Research Directions in Object�Oriented Programming� pages ��
�� M�I�T�
Press� Cambridge� MA� �	���

�L���� B� Liskov et al� CLU Reference Manual� volume ��
 of Lecture Notes in Computer
Science� Springer�Verlag� �	���

�Mey��� B� Meyer� Object�Oriented Software Construction� Prentice�Hall� �	���

�Mey	�� B� Meyer� Ei
el� the language� Prentice�Hall� �		��

�Mey	�� Bertrand Meyer� Static typing� OOPS Messenger� ��
������	� �		�� Text of an
OOPSLA �	� address�

�Mit	�� J�C� Mitchell� Toward a typed foundation for method specialization and inheritance�
In Proc� ��th ACM Symp� on Principles of Programming Languages� pages ��	���
�
January �		��

�Pet	�� Leaf Petersen� A module system for LOOM� Williams College Senior Honors Thesis�
�		��

�PS	�� Benjamin Pierce and Martin Ste�en� Higher�order subtyping� Theoretical Computer
Science� �		�� To appear� A preliminary version appeared in IFIP Working Confer�
ence on Programming Concepts� Methods and Calculi �PROCOMET�� June �		
�
and as University of Edinburgh technical report ECS�LFCS�	
���� and Universit"at
Erlangen�N"urnberg Interner Bericht IMMD���� 	
� January �		
�

��

�PT	
� Benjamin C� Pierce and David N� Turner� Simple type�theoretic foundations for
object�oriented programming� Journal of functional programming�
������
�� �		
�
An earlier version appeared in Proc� of POPL �	�� pp� �		�����

�Red��� U�S� Reddy� Objects as closures� Abstract semantics of object�oriented languages�
In Proc� ACM Symp� Lisp and Functional Programming Languages� pages ��	��	��
July �	���

�RIR	�� N� Rodriguez� R� Ierusalimschy� and J� L� Rangel� Types in School� SIGPLAN

Notices� ������ �		��

�SCB���� C� Scha�ert� T� Cooper� B� Bullis� M� Kilian� and C� Wilpolt� An introduction to Trel�
lis Owl� In OOPSLA ��� Proceedings� pages 	���� ACM SIGPLAN Notices��������
November �	���

�Sha	�� David Shang� Type�safe reuse of prototype software� In Proc� �rd Software Engineer�

ing and Knowledge Engineering International Conference� �		��

�Str��� B� Stroustrup� The C�� Programming Language� Addison�Wesley� �	���

�Tes��� L� Tesler� Object Pascal report� Technical Report �� Apple Computer� �	���

�US ��� US Dept� of Defense� Reference Manual for the Ada Programming Language� GPO
������������
��� �	���

�Wir��� Niklaus Wirth� The programming language Pascal� Acta Informatica� �������� �	���

�Wir��� Niklaus Wirth� Programming in Modula��	 �rd edition� Springer�Verlag� �	���

A Example linked list program using matching

The following is a sample program which uses a static type system similar to that presented in
section ��� The program de�nes and uses heterogeous linked lists of elements� each element of
which must have a type matching rect type � Because OrdList class is polymorphic in the type of
the nodes in the list� we can easily instantiate the lists to be either singly or doubly�linked�

We have left out inessential portions of the code the program in order to conserve space� The
keyword include used in the de�nition of DbleNode type simply indicates that all methods declared
in Node type are also included in DbleNode type �

program heterogeneous
linked
lists�

		 Program developing heterogeneous singly	 and doubly	linked lists�

		 Elements of the linked list must be of type which matches rect
type�

type

rect
type � ObjectType

gt� func��rect
type��bool�

eq� func��rect
type��bool�

��

get
height� func���integer�

draw� proc���

end ObjectType�

Node
type � ObjectType

get
next� func���mytype�

get
val� func����rect
type�

set
next� proc�mytype��

set
val� proc��rect
type��

attach
right� proc�mytype�

end ObjectType�

DbleNode
type � ObjectType include Node
type

get
prev�func���mytype�

set
prev�proc�mytype��

end ObjectType�

TypeFunction OrdList
type�U �� Node
type� � ObjectType

find� func��rect
type��bool�

add� proc�U��

drawall� proc���

end ObjectType�

classes

class gen
rect
class�tp�lft�bot�rght�newz� integer�

var

top � tp� integer�

left � lft� integer�

bottom � bot� integer�

right � rght� integer�

z � newz� integer�

methods

function gt�other� �rect
type�� bool

begin

return �z � other�get
height���

end�

function eq�other� �rect
type�� bool

���

function get
height��� integer

���

procedure draw

���

end class�

��

class Node
class�v� �rect
type�

var

val � v� �rect
type�

next � nil� mytype�

methods

function get
next��� mytype

begin

return next

end�

function get
val��� �rect
type

begin

return val

end�

procedure set
next�nxt�mytype�

begin

next �� nxt

end�

procedure set
val�vl� �rect
type�

begin

val �� vl

end�

procedure attach
right � procedure�newNext� mytype�

begin

self�set
next�newNext�

end�

end class�

class DbleNode
class�v� �rect
type�

inherits Node
class�v� modifying attach
right

var

prev � nil� MyType

methods

function getPrev���MyType

���

procedure setPrev�newPrev� MyType�

���

procedure attachRight�newNext� MyType�

begin

self�setNext�newNext��

newNext�setPrev�self�

end

end class�

class OrdList
class�U �� Node
type�

var

�

head � nil� U�

methods

function find�match��rect
type�� bool

var

current� U�

begin

current �� head�

while �current �� nil� � match�gt�current�get
val��� do

current �� current�get
next��

end�

if �current �� nil� � �current�get
val����eq�match�� then

return true

else

return false

end�

procedure add�new
node�U�

var

prev� U�

current� U�

begin

if head � nil then

head �� new
node�

new
node�set
next�nil��

else if head�get
val���gt�new
node�get
val��� then

new
node�attach
right�head��

head �� new
node�

else

prev �� head�

current �� head�get
next���

while �current �� nil� �

current�get
val���gt�new
node�get
val��� do

prev �� current�

current �� current�get
next���

end�

if current � nil then

prev�attach
right�new
node��

new
node�set
next�nil��

else

new
node�attach
right�current��

prev�attach
right�new
node��

end�

end�

end�

end�

��

drawall � procedure��

var

current� U�

cur
val� �rect
type�

begin

current �� head�

while �current �� nil� do

cur
val �� current�get
val���

cur
val�draw���

current �� current�get
next���

end�

end�

end�

end class�

var

temp
rect� rect
type�

shape� �rect
type�

lnode� Node
type�

dnode� DbleNode
type

some
node� �Node
type�

slist� �OrdList
type�Node
type��

dlist� OrdList
type�DbleNode
type��

begin 		 main program

temp
rect �� new�gen
rect
class�����������

lnode �� new�Node
class�temp
rect���

slist �� new�OrdList
class�Node
type���

dnode �� new�DbleNode
class�temp
rect���

dlist �� new�OrdList
class�DbleNode
type���

slist�add�lnode�clone����

		 illegal� slist�add�dnode�clone����

		 Can�t add a doubly	linked node to a singly	linked list�

		 illegal� slist �� dlist

		 OrdList
type�DbleNode
type� does not match OrdList
type�Node
type��

temp
rect �� new�gen
rect
class �������������

lnode�set
val�temp
rect��

slist�add�lnode��

some
node �� dnode�get
next���

lnode �� lnode�get
next���

shape �� lnode�get
val���

		 illegal� temp
rect �� lnode�get
val���

		 Result of get
val�� has type �rect
type�

lnode�setval�shape�

��

PrintNum�shape�get
height����

end�

The two new type�checking rules for !�types introduced in section �� are necessary to type
check this program� The �rst states that if an expression e has type T � then e also has type
!T� The second states that if e has type !T and T �!U � then e also has type !U� The �rst of
these rules allows the assignment to slist and the use of temp rect as a parameter in the message
send lnode�set val�temp rect�� Both of these rules are used in type checking the assignment to
some node �

The program is written with a syntax and style similar to that of the language LOOM �BP	���
LOOM di�ers from the above in a few syntactic details� It also supports the use of classes as �rst�
class values �e�g�� classes can be returned as values from functions�� provides �ner control over the
visibility of methods� and includes a module system for programming in the large� A description
of the module facilities can be found in �Pet	���

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

