
Type Reconstruction for SCI �

Howard Huang Uday Reddy

Department of Computer Science

The University of Illinois

fhhuang�reddyg�cs�uiuc�edu

January ��� ����

Abstract

We present a type reconstruction algorithm for SCIR ����� a type system
for a language with syntactic control of interference� SCIR guarantees
that terms of passive type do not cause any side e�ects� and that dis�
tinct identi�ers do not interfere� A reconstruction algorithm for this type
system must deal with di�erent kinds 	passive and general
 and di�erent
uses of identi�ers 	passive and active
� In particular� there may not be a
unique choice of kinds for type variables� Our work extends SCIR typings
with kind constraints� We show that principal type schemes exist for this
extended system and outline an algorithm for computing them�

� Introduction

Researchers interested in functional programming languages have recently turned
their attention to extending these languages with suitably�controlled state ma�
nipulation facilities ���� �� �� ��� ���� This e	ort has brought into focus the
pioneering work of Reynolds ��
� ��� ��� in the late ��
s and early ��
s� devoted
to the analysis and re�nement of imperative programming languages using
�functional programming principles� �lambda calculus and its equivalences��
In retrospect� Reynolds
s work may be seen to have addressed two signi�cant
issues� In designing a higher�order programming language with imperative fea�
tures� �i� how does one retain the functional reasoning principles �such as the
equivalences of lambda calculus�� and �ii� how does one retain the imperative
reasoning principles �such as Hoare logic�� Part of the answer to �i� was already
contained in the design of Algol
� with its call�by�name parameter mechanism�
and Reynolds
s work brings this to the forefront ����� This part of Reynolds
s
analysis is adopted ipso facto in the recent work in functional programming�
The other part of the answer to �i� as well his answer to �ii� are contained
in Reynolds
s �Syntactic Control of Interference� or SCI ��
�� Unfortunately�
these ideas of Reynolds have had little impact on the afore�mentioned work in
functional languages� though they are clearly applicable� We explain the two
aspects of SCI in turn�

How does one retain functional reasoning principles� In de�ning a function
procedure that returns� say an integer� one often wants to use an algorithm

�This work was funded by the National Science Foundation under grant number NSF�
CCR����������

that creates local variables and manipulates them internally�� To preserve the
standard reasoning principles of integers� the procedure should only manipu�
late local variables without making any changes to the global variables� But�
most programming languages have no checks to ensure this� Consequently�
terms of type integer may well involve global state changes �often called �side
e	ects��� thwarting standard reasoning about integers� Reynolds
s proposal in
SCI contains a comprehensive treatment of this issue via a classi�cation of types
into active and passive types� Computations of passive types �like integer� are
guaranteed not to have any global side e	ects so that standard reasoning is
applicable�

How does one retain imperative reasoning principles� The usual reasoning
principles of imperative programs tend to assume that distinct identi�ers do
not interfere� i�e�� using one identi�er in a computation does not a	ect the
meaning of the other identi�er� Aliasing is a common example of interference
where two identi�ers happen to denote the same �mutable� variable� Aliasing
is explicitly ruled out in the usual formulations of Hoare logic ��� ���� However�
other kinds of interference arise in languages with �higher�order� procedures�
For instance� if a procedure p modi�es a global variable x� calling p interferes
with x� Again� Reynolds gives a comprehensive set of rules to guarantee that
distinct identi�ers do not interfere�
Unfortunately� Reynolds notes that there is a problem with his rules in that

a legal term can be reduced to an illegal term via the standard reduction rules
of lambda calculus� ��Subject reduction� fails�� Some of the type systems
proposed for functional languages with imperative features ���� �� have this
problem as well� The problem remained unresolved for over a decade until�
recently� O
Hearn et al� ���� proposed a revised type system in �Syntactic
Control of Interference Revisited� �SCIR�� Their proposal uses modern proof�
theoretic techniques inherited from linear logic and logic of unity ��� ��� and
possesses the subject reduction property� We should note that Reynolds himself
presented a solution to this problem ����� but it goes much beyond the original
proposal by involving conjunctive types� We do not pursue the new Reynolds
system in this paper as SCIR is a simpler system applicable to a wide range of
programming languages and type systems�
Modern functional programming languages� pioneered by Milner
s work on

ML ���� possess type reconstruction systems� where the programmer is allowed to
omit type declarations and the compiler �lls in this information in the most gen�
eral fashion� The adoption of SCI type regimen to these languages necessitates
a type reconstruction system� In this paper� we present a type reconstruction
algorithm for SCIR�
The SCIR type system is unorthodox in that it involves two separate zones

��passive� and �active� zones� in the typing judgements� This corresponds to
the fact that the free identi�ers of a term are classi�ed into two classes� The
movement of the identi�ers between zones depends on the types of the subterms
where the identi�ers occur� which in turn depends upon certain zones being
empty� Thus� it is by no means obvious that type reconstruction is possible for
SCIR�
Moreover� the type reconstruction algorithm has to account for the fact

�Throughout this paper� we use the term �variable� for mutable variables� Variables in
the sense of lambda calculus are called �identi	ers��

that there are two kinds of types �general types and passive types� in the
type system� Correspondingly� type schemes must keep track of the kinds of
type variables� The choice between the kinds of type variables is not always
unique� For instance� the term �f� �x� fxx has the �principal� type scheme
�� � � � �� � � � � but is legal only if either � or � is passive� To get
around this di�culty� we associate kind constraints with type schemes� which
are boolean constraints specifying possible kinds of type variables� For example�
the type of �f� �x� fxx may be expressed as�

passive � � passive � � ��� �� ��� �� �

With this adaptation� we show that principal type schemes exist for SCIR and
give an algorithm to compute them�

��� Related Work

While a large body of work exists in type reconstruction algorithms� we do not
know of any systems where kind constraints are involved�
Some work similar to ours is that on type reconstruction for linear logic�

based type systems ���� �� and the related system of single�threaded lambda
calculus ���� Constraints like ours occur in these systems� though they are not
concerned with kinds� A further di	erence is that there is no type rule similar
to Passi�cation in these systems� but this rule is central in SCIR�
Our research also resembles the work on e	ect systems and their reconstruc�

tion algorithms �
� ���� but it is hard to make a detailed comparison because
those systems are designed for call�by�value languages whereas SCI is designed
for lambda calculus�based call�by�name languages�

� Issues in SCI

As mentioned in Introduction� SCI is concerned with two issues�

�� ensuring that passive�typed computations have no side e	ects� and

�� ensuring that distinct identi�ers do not interfere�

In this section� we motivate these issues and discuss the challenges they pose
for designing a formal type system�
As mentioned in Introduction� we would like to permit integer�typed expres�

sions which allocate and manipulate local state� Consider an operator of the
form do�int� x� C where x is a bound identi�er of type var�int� and C is a com�
mand term� Its semantics is to allocate a local variable bound to x� execute C
in its context and� �nally� return the content of x as the value of the expression�
Such an expression form arises� for example� in the analysis of �function proce�
dures� of Algol
�� Similar expression forms have been proposed for functional
languages� the Obs�elim rule of Imperative Lambda Calculus ����� the pure
operator of �var ��� and the runST operator of Glasgow Haskell ����� To ensure
that such an expression is well�behaved� one must verify that the embedded
command C has no global e	ects other than to the variable x� A naive design
is to classify types into passive types �like int� and active types �like comm

and var�int�� and then insist that all free identi�ers of C other than x are of
passive types� Rules similar to this are used in Imperative Lambda Calculus
and the type system for �var ���� ��� Unfortunately� this naive design runs into
the problem of subject reduction�
Consider the terms�

�M�� �x� int�do�int� r� r �� x � int� int
�N�� �� h�v� v �� �v � �i � int

where �� is the �rst projection and � is a dereferencing operator for variables�
Both terms are legal� �The body of do has no free identi�ers of active types
other than r�� Hence� the application �M�N�� should be a legal term� However�
beta�reduction of �M�N�� yields�

�P�� do�int� r� r �� ��h�v� v �� �v � �i

where the body of do contains the free identi�er v of active type var�int�� This
term is illegal with the naive rule for do and subject reduction fails�
Intuitively� the term P� may be considered legal because under a call�by�

name semantics the assignment v �� �v�� will never be executed� and no global
state changes take place during the evaluation of P��
To avoid the subject reduction problem� Reynolds classi�es occurrences of

free identi�ers as active or passive� A free occurrence of x in a term is considered
passive if it is in a passive�typed subterm� otherwise� the occurrence is active�
The term do�int�x�C is legal if all free identi�er occurrences in C other than
x are passive occurrences� Since all occurrences of v in P� are in the subterm
��h�v� v �� �v � �i which is of passive type int� P� is legal�
To ensure that distinct identi�ers do not interfere� SCI requires that in any

application term �MN�� the function termM and the argument termN do not
interfere� This means� in essence� that the respective computations ofM andN
can proceed concurrently and the results are still determinate� One can make
this fact explicit by adding a non�interfering parallel composition operator

k � comm� comm� comm

so that C� kC� is a command that runs C� and C� in parallel�
How should we decide if M and N are non�interfering� Since we have

already decided to focus on occurrences of free identi�ers� we might insist that
all common free identi�ers of M and N should have only passive occurrences
in these terms� If x is used actively in M � then x may not appear in N �even
passively�� Yet� this design runs into the subject reduction problem� Consider
the terms�

�M�� �c� comm� r �� ��h�v� v �� � k ci
�N�� w �� ��h�v� v �� �i

The only common free identi�er is v and all its occurrences are passive� Hence�
the application �M�N�� is legal� However� beta�reduction yields�

�P�� r �� �� h�v� v �� � kw �� ��h�v� v �� �ii

Here� the second component v �� � kw �� ��h�v� v �� �i is not legal in
Reynolds
s system because v has an active occurrence in the subterm v �� ��

Again� intuitively� this term should be legal because the assignment v �� � and
the inner assignment v �� � will never be executed�
This problem has proved su�ciently intricate that it remained unsolved for

over a decade� The solution due to O
Hearn et al� ���� is obtained by using an
explicit contraction rule �together with a clear separation of passive and active
free identi�ers�� The term

�P �

�
� r �� �� h�v� v �� � kw �� ��h�v

�� v� �� �ii

is clearly legal� Since all occurrences of v and v� in P �
�
are are passive occur�

rences� one can use a Contraction step to rename v� to v and obtain the term
P��
This example shows how a legal term may have seemingly illegal subterms�

The legality of the subterm v �� � kw �� ��h�v� v �� �i cannot be decided by
looking at the subterm alone� One must appeal to the fact that the subterm
occurs in an overall context of a passively�typed term�
The type system is su�ciently intricate that its soundness is by no means

obvious� One must demonstrate soundness by exhibiting an adequate seman�
tic model that has a re�ective subcategory of passive types� Several semantic
models with this property are now available ���� ��� ���� So� the soundness is
not in question�

� The SCIR Type System

The type terms of SCIR have the following context�free syntax�

data types � ��� int j bool
types � ��� � j var��� j comm j � � � j � � � j �� � j � �p �

Data types are types for values storable in variables� A data type � used as
a type denotes expressions producing ��typed values �sometimes written as
exp����� The type of commands is represented by comm� There are two kinds
of product types� the components of a cross pair ��� may interfere with each
other� but the components of a tensor pair ��� may not� The type var��� can
be thought of as an abbreviation for �� � comm���� Passive functions� which
do not assign to any global variables� are given a special type constructor�p�
Passive types � form a subset of the set of types�

� ��� � j �� � j �� � j � � � j � �p �

A term with a passive type cannot modify any global variables� so it cannot
a	ect the outcome of any other term�
Typing judgements are of the form � j � �M � � where M is a term� and �

its type� The type context is partitioned into the passive zone � and the active
zone �� which contain the passive free identi�ers and the active free identi�ers
of M respectively� The passive free identi�ers can only be used passively� i�e��
in passive�typed subterms� Note that the types assigned to identi�ers by � do
not have to be passive�
The typing rules are shown in Figure �� Identi�ers can only be moved from

� to � when M has a passive type �Passi�cation�� There are no restrictions

Axiom
j x� � � x� �

� j �� x� � �M ��
Passi�cation

�� x� � j � �M ��

�� x� � j � �M � ��
Activation

� j �� x� � �M � ��

� j � �M � �
Weakening

�� �� j �� �� �M � �

� j � �M � �
Exchange

�� j �� �M � �

�� x� �� x�� � j � �M � ��
Contraction

�� x� � j � �M �x	x��� ��

� j � �M � �� � j � � N � ��
�I

� j � � hM�Ni� �� � ��

� j � �M � �� � ��
�Ei �i � �� ��

� j � � �iM � �i

�� j �� �M � �� �� j �� � N � ��
�I

��� �� j ��� �� �M �N � �� � ��

� j � �M � �� � ��
�Ei �i � �� ��

� j � � ��i M � �i

� j �� x� �� �M � ��
� I

� j � � �x� ���M � �� � ��

�� j �� �M � �� � �� �� j �� � N � ��
� E

��� �� j ��� �� �MN � ��

� j �M � �� � ��
�p I

� j � promote M � �� �p ��

� j � �M � �� �p ��
�p E

� j � � derelict M � �� � ��

Figure �� SCIR Typing Rules

on the Activation rule� so identi�ers can move from � to � at any time� The
�I rule allows unrestricted identi�er sharing� but �I and � E both require
disjoint type contexts in the hypotheses� Sharing is only achieved through
Contraction� which allows passive free identi�ers to be used multiple times in
a term� Finally� note that � must be empty in �p I�
We can use these basic types to de�ne several constants useful in �real�

programming languages such as Idealized Algol� For example�

��� � var���� � � comm �assignment�
�� � var���� � �dereference�
new� � �var���� comm�� comm �local variable creation�
� � comm� comm� comm �sequential composition�
k � comm� comm� comm �parallel composition�
do� � �var����p comm�� � �block expression�
rec� � �� �p ��� � �recursion�

We will use new��� x�M � do��� x�M and rec��� x�M as syntactic sugar for
new� �x�var����M � do� �promote �x�var����M� and rec� �promote �x� ��M�
respectively�

C���x� � let � � lookup�x���
in passify��� fxg� �� ��

C����x� ���M� � let ���A� P�E� � C��� fx � ��g�M�
in if x � E then error

else ��� � ��A	 fxg� P 	 fxg� E�

C���MN� � let ��� � ��A�� P�� E�� � C���M�
���� A�� P�� E�� � C���N�
E � �A�
A�� � �A�
 P��� �P�
A�� � �E� �E��

in passify��� �A� �A��	E� �P� � P��	E�E�

C��� hM�Ni� � let ���� A�� P�� E�� � C���M�
���� A�� P�� E�� � C���N�
P � �P� � P��	 �P�
 A��	 �P�
A��

in ��� � ��� A� �A�� P�E� �E��

C����iM� � let ��� � ��� A� P�E� � C���M�
in passify��i� A� P�E�

C���promote M� � let ��� � ��� �� P� �� � C���M�
in ��� �p ��� �� P� ��

C���derelict M� � let ��� �p ��� A� P�E� � C���M�
in ��� � ��� A� P�E�

passify���A� P�E� �

�
��� �� A� P �E� �� if � is passive
���A� P�E� otherwise

Figure �� Type Checking Algorithm for SCIR

� Type Checking

The main issue in type checking for SCIR is the noncompositionality of the type
system� a term M may be well�typed in some context �� even if its subterms
seemingly are not� For example� given c� comm� the term ��h�� c k ci is typable�
but the subterm c k c is not� Our approach is to keep track of the free identi�ers
in a term M that are used actively� but must be passi�ed �and contracted�
because of sharing� IfM occurs in the context of a larger passive term� then all
its free identi�ers have passive occurrences� Otherwise� the sharing is illegal�
An outline of an SCIR type checking algorithm C is shown in Figure ��

Given a set of type assumptions � of the form fx�� ��� x�� ��� � � � � xn� �ng and a
term M � C���M� returns either error or a quadruple ���A� P�E�� The type
of M is �� and A� P and E form a partition of the free identi�ers of M such
that�

� A contains the non�shared� actively�used identi�ers�

� P is the set of identi�ers �which may be shared� that are used passively�

and

� E contains shared identi�ers that are used actively�

A termM is not typable in a context � if the type checker returns error or if
it returns a quadruple where E is not empty� If E is empty� then all sharing is
legal and M is typable�
The algorithm description uses pattern matching to bind variables as well

as to express restrictions on values and types� In a recursive call ���A� P�E� �
C���M�� each component of the left side must be uni�able with the corre�
sponding component of the right side� The auxiliary function passify moves all
free identi�ers to P whenever a term has a passive type�
As an example� the results of type checking the two terms mentioned above

are shown here�

C�fc� commg� c k c� � �comm� �� �� fcg�
C�fc� commg���h�� c k ci� � �int� �� fcg� ��

The running time of the algorithm depends on the way sets are represented�
Using ordinary lists� for example� results in a running time of O�n��� where n
is the length of the term�

� Type Reconstruction

Extend the language of terms with untyped lambda terms of the form �x�M �
Given a termM in the extended language� type reconstruction is the problem of
�nding a well�typed termM � in the original language such thatM is obtained
by erasing some or all type declarations in M �� As is well�known� such a term
M � is not unique� One must use type variables to cover all possibilities�
A type scheme
 is a type term which can possibly contain type variables

�� Recall that SCIR distinguishes the subset of passive types from the set
of all types� How do we tell whether or not a type variable � represents a
passive type� We de�ne two kinds �second�order types�� Passive and Type�
corresponding to the two classes� We write � �� � to indicate that type variable
� has kind �� Given a kind assignmentK for the set of type variables occurring
in
� we can determine if
 is passive or not� The SCIR type system can be
extended to type schemes using kind assignments�
An SCIR type reconstruction algorithm is responsible for deducing both

missing type information as well as a kind assignment for the type variables�
Unfortunately� a typing judgement may be valid under several kind assign�
ments� For example� the term �f� �x� fxx can be typed under two di	erent
kind assignments� as shown in Figure �� If � �� Passive� then x and x� can
be passi�ed immediately after they are introduced� On the other hand� if
� �� Passive� then x and x� can be passi�ed after� E� In both cases� the two
identi�ers can be contracted� so fxx is typable�
To get around this di�culty� we use kind constraints� boolean constraints

which represent the class of all kind assignments under which a term is typable�
Let p be a unary predicate with the semantics that p�
� means
 is passive�
When
 is a ground type� p�
� can be simpli�ed to true if
 is a passive type�

j f �� � �� � � f ��� �� �

j x�� � x��
Pass�

x�� j � x��

x�� j f �� � �� � � fx�� � �

j x��� � x���
Pass�

x��� j � x���
� E

x��� x��� j f �� � �� � � fxx���
Contraction

x�� j f �� � �� � � fxx��
� I

j � �f� �x� fxx� �� � �� ��� �� �

j f �� � �� � � f �� � �� � j x�� � x��
� E

j f ��� �� �� x�� � fx�� � � j x��� � x���
� E

j f ��� �� �� x��� x��� � fxx���
Pass� �twice�

x��� x��� j f ��� �� � � fxx���
Contraction

x�� j f ��� �� � � fxx��
� I

j � �f� �x� fxx� �� � �� ��� �� �

Figure �� Derivations for �f� �x� fxx when � �� Passive �top� and when � ��
Passive �bottom��

and false otherwise� For type variables �� p��� is true under a kind assignment
K if �� �� Passive� � K� Simpli�cations are shown below�

p��� � true
p�var���� � false
p�comm� � false
p�
� �
�� � p�
��
 p�
��
p�
� �
�� � p�
��
 p�
��
p�
� �
�� � p�
��
p�
� �p
�� � true

���

Kind constraints are described by the following grammar�

C ��� true j false j p�
� j C �C � j C
C �

A constraintC is satis�able if there exists some kind assignmentK under which
C can be simpli�ed to true�
To support type reconstruction� we de�ne a modi�ed type system SCIRK

which maintains kind constraints for type variables� A judgement is of the form
A �M �
 �G� where the assumption list A is of the form

x�� �� �P��C��� � � � � xn� �n �Pn�Cn�

and Pi� Ci and G stand for kind constraints� Sometimes we also use the vector
notation
x�
� �
P �
C� to represent an assumption list� Each identi�er xi in the

Axiom
x�� �p	�
� true� � x�� �true�

A� x��� �P �C� � M ��� �G�
� I

A � �x�M � �� � �� �G � C�

A �M � �� �G�
� I �

A � �x�M ��� � �� �G�
	x not in A

�x� �� � �P � �C�� �y� ��� � �P�� �C�� �M � �� � �� �G�� �x� �� � �P �� �C ��� �z� ��� � �P�� �C�� � N ��� �G��
� E

�x� �� �	 �P � �P �
 � p	��
� 	 �P � �P �
 � p	��
�� �y� ��� � �P� � p	��
� �C� � p	��
��

�z� ��� � �P� � p	��
� �C� � p	��
� �MN � �� �G� �G��

�x� �� � �P � �C�� A� �M � �� �G�� �x� �� � �P �� �C ��� A� � N ��� �G��
�I

�x� �� � �P � �P �� �P � �P ��� A�� A� �M �N ��� � �� �G� �G��

�x� �� � �P � �C� �M � �� � �� �G�
�Ei 	i
 �� �

�x� �� � �P � p	�i
� �C � p	�i
� � �
�

i M � �i �G�

�x� �� � �P � �C�� A� �M � �� �G�� �x� �� � �P �� �C ��� A� � N ��� �G��
�I

�x� �� � �P � �P �� �C � �C ��� A�� A� � hM�Ni��� � �� �G� �G��

�x� �� � �P � �C� �M � �� � �� �G�
�Ei 	i
 �� �

�x� �� � �P � p	�i
� �C � p	�i
� � �iM � �i �G�

�x� �� � �P � �C� �M � �� � �� �G�
�p I

�x� �� �
���
true�

���
true� � promote M � �� �p �� �G � 	

�
�P
�

A � M ��� �p �� �G�
�p E

A � derelict M � �� � �� �G�

Figure �� Type rules for SCIRK �

list is associated with a passi�cation constraint Pi and a contraction constraint
Ci� The constraint G is called the global constraint� �We also refer to these
as the P�constraint� C�constraint� and G�constraint respectively�� A judgement
A � M �
 �G� can be read as �The term M has type
 in the assignment A�
as long as the constraint G and all contraction constraints in A hold� Further�
all free identi�ers x whose passi�cation constraints in A hold are passive free
identi�ers�� From this reading� it is clear that the P�constraint is what is
needed for an identi�er to be passi�ed� whereas C� and G�constraints arise
from identi�ers that have already been passi�ed� The di	erence between C�
and G�constraints is that they typically refer to occurrences of free and bound
identi�ers respectively�
The type rules of SCIRK are shown in Figure �� There is some notation that

should be explained� For �I and �I� the environmentsA� and A� have disjoint
domains� Similarly�
y and
z are disjoint in the � E rule� Identi�ers common
to both hypotheses are represented by
x� although the type and constraint
information may di	er in each hypothesis�
Boolean operations on constraint vectors can be de�ned straightforwardly�

If
P � P�� � � � � Pn and
P � � P �
�
� � � � � P �

n�

P � p�
� � P� � p�
�� � � � � Pn � p�
�

P

P � � P�
 P �

�
� � � � � Pn
 P �

n

Also�
		�
true is a vector of trivially satis�able constraints�

Note the following facts about the SCIRK system�

�� The rules are syntax�directed� Given a term M � there is at most one
derivation for M � �Although there are two rules � I and � I � for
deriving �x�M � only one is applicable depending on whether or not x
occurs free in M ��

�� There are no structural rules� All the identi�ers of an assumption list A
occur in the term M in a derivable judgement�

�� For every identi�er x in an assumption list of a derivable judgement� the
passi�cation constraint logically implies the contraction constraint�

�� For every derivable judgement A �M �
 �G�� the constraint p�
� logically
implies every passi�cation and contraction constraint in A�

The �rst two facts mean that we can devise a type reconstruction algorithm for
SCIRK in the standard fashion �using uni�cation in the Hindley�Milner style��

��� Explanation

The passi�cation constraint of an identi�er speci�es the condition necessary for
that identi�er to be passi�ed� The constraint will simplify to true if and only if
all occurrences of the identi�er appear in passively�typed subterms� This con�
straint may become weaker as the derivation progresses in particular� through
applications of the �Ei� �Ei and � E rules� Intuitively� this corresponds to
situations where the identi�er appears in the context of a larger� passively�typed
term�
The contraction constraint of an identi�er is similar to its passi�cation

constraint� but represents conditions arising from occurrences that have al�
ready been contracted� Hence� the contraction constraints must necessarily
hold for the term to be well�typed� Like passi�cation constraints� contraction
constraints may become weaker as the derivation progresses�
The global constraint records the conditions that cannot be weakened fur�

ther in the rest of the derivation� If the global constraint of a termM is false�
then there are identi�ers inM that must be passi�ed but cannot be� regardless
of M
s context� Neither M nor any term containing M is typable�
The following derivations illustrate the key aspects of SCIRK � First� the

term �c� comm� ��h�� c k ci can be typed as shown below�

Axiom
c� comm �false� true� � c� comm �true�

k ��I�
c� comm �false� false� � c k c� comm �true�

�I
c� comm �false� false� � h�� c k ci� int � comm �true�

�E�

c� comm �true� true� � ��h�� c k ci� int �true�
� I

� �c� comm� ��h�� c k ci� comm� int �true�

�Recall that p�comm� is false� while p�int� is true�� The subterm c k c appears
to be illegal� but it may safely occur within any passively�typed term� in which
case the contraction constraint on c is weakened and becomes satis�able�
The next example shows that the term �c� comm� �c k c� is illegal indepen�

dent of its context�

Axiom
c� comm �false� true� � c� comm �true�

k ��I�
c� comm �false� false� � c k c� comm �true�

� I
� �c� comm� �c k c�� comm� comm �false�

Once the identi�er c becomes lambda�bound� it is no longer free and cannot
be passi�ed� The global constraint will be false in any continuation of this
derivation�
As an intricate example� consider �f� �g� �x� f���x � ��x�� g���x�� De�ne

 � � � � � comm and � � � � comm� The two immediate subterms can
be typed as follows�

f �
 �false� true�� x�� � � �p���� p���� � f���x� ��x�� comm �true�

g� � �false� true�� x�� � � �p���� true� � g���x�� comm �true�

Applying �I to these two judgements only a	ects the constraints of x�

f �
 �false� true�� g� � �false� true�� x�� � � �p���
 p���� p����
� f���x� ��x�� g���x�� comm �true�

The passi�cation and contraction constraints of x are di	erent because only
the �rst two occurrences of x are contracted� The third occurrence does not
have to be contracted due to the �I rule� From this judgement we can derive
the principal typing�

� �f� �g� �x� f���x� ��x�� g���x��
� � � ��� ��� comm �p����

Finally we outline a derivation for the term �f� �x� fxx mentioned at the
beginning of this section� The �rst application of � E is straightforward and
results in the judgement

f �� � �� � �p���� true�� x�� �p��� � p���� true� � fx��� � �true�

Applying fx to x and continuing the derivation�

f �� � �� � �p���� true�� x�� �p��� � p���� p��� � p���� � fxx�� �true�
� I

f ��� �� � �p���� true� � �x� fxx��� � �p��� � p����
� I

� �f� �x� fxx� �� � �� ��� �� � �p��� � p����

The term is typable in any kind assignment which maps � or � �or both� to
the kind Passive�

��� Soundness

A type substitution � maps type variables to types� By ��A � M �
 �G�� we
mean the type judgement obtained by applying � to all type terms in the
judgement� We call the result an instance of the original judgement� An SCIR
judgement � j � �M �� � is said to be an instance of A �M �
 �G� if there is a
type substitution � such that

�� M � erase�M ���

�� ��A � M �
 �G�� is the same as � j � � M �� � except for the constraints
and type declarations in M �� and

�� in ��A � M �
 �G��� the global constraint� all the C�constraints� and the
P�constraints of all identi�ers in dom��� simplify to true�

An extension of a judgement A � M �
 �G� has the form
x�
� �
		�
true�

		�
true�� A �

M �
 �G� �obtained by adding identi�ers with trivial constraints�� An SCIR
judgement � j � � M �� � is said to be covered by an SCIRK judgement A �
M �
 �G� if it is an instance of an extension of the latter�

Theorem � �Soundness� If the judgement A � M �
 �G� is derivable in
SCIRK and covers an SCIR judgement � j � �M �� �� the latter is derivable in
SCIR�

��� Completeness

Lemma � If A � M �
 �G� is derivable� then every instance ��A � M �
 �G��
is derivable�

Lemma � If x� � �P �C�� x�� � �P ��C ��� A �M �
 �G� is derivable� then x� � �P

P ��C ���� A �M �x	x���
 �G� is derivable� for some C�constraint C ���

Proof� By induction on the derivation of the given judgement� If the last
derivation step has two hypotheses� where x appears in one and x� appears in
the other� we can substitute x for x� and derive the conclusion�

Theorem � �Completeness� If � j � � M �� � is derivable in SCIR� then
there exists a derivable judgement A �M �
 �G� of SCIRK that covers � j � �
M �� ��

Proof� By induction on the derivation of � j � � M �� �� Consider the last
derivation step� Some of the key cases are outlined below�

� Passi�cation� By induction� � j x� ��� � � M ��� is covered by some
x� � �P �C�� A � M �
 �G� using a substitution �� Since ��
� is passive�
��P � holds by fact �� Thus� the same SCIRK judgement also covers the
conclusion �� x� �� j � �M ����

� Contraction� This follows from Lemma ��

� �I� By induction� there exist

A� �M �
� �G�� and A� � N �
� �G��

which cover

�� j �� �M �� �� and �� j �� � N �� ��

So we can derive

A�� A� �M �N �
� �
� �G�
G��

If �� and �� are the substitutions by which the SCIRK hypotheses cover
the SCIR hypotheses� then �� � �� covers the conclusion�

� �I� By induction� the hypotheses of �I are covered by

x�
� �
P �
C�� A� �M �
� �G��

and

x�
� � �
P ��
C ��� A� � N �
� �G��

Since the assumption lists in these judgements both cover � � �� there
exists a most general type substitution �� such that ���
�� � ���
� ��� By
Lemma ��

���
x�
� �
P �
C �� A� �M �
� �G���

and
���
x�
� � �
P ��
C ��� A� � N �
� �G���

are also derivable� Then we can apply the SCIRK �I rule�

��� Reconstruction Algorithm

It is relatively straightforward to translate the type rules into a reconstruction
algorithm K� where

K�M� � �A�
�G�

if and only if
A �M �
 �G�

is derivable in SCIRK � Whenever two subterms containing a common identi�er
x are combined �using� E� �I� or �I�� K must �nd a most general uni�er for
the types of x in the subterms� If no such uni�er exists� then the term cannot be
typed� The kind constraints can be simpli�ed using the simpli�cation rules ���
as well as the laws of boolean algebra� If the G�constraint simpli�es to false�
then the term cannot be typed�
The reconstruction algorithm takes exponential time in the worst case� as

in the case of Hindley�Milner type inference�

��� Comparison with linear type reconstruction

In ����� Wadler gives a type reconstruction algorithm for a linear type system
based on �standard types�� Our reconstruction algorithm is somewhat reminis�
cent of this algorithm and we have indeed derived signi�cant inspiration from
Wadler
s work� On the other hand our algorithm di	ers in more ways than
it resembles Wadler
s� In the �rst place� SCIR is considerably more sophisti�
cated than the linear type system� In addition to the promotion ��p I� and
dereliction ��p E� rules �on the right�� which correspond to �I and �E in the
linear type system� SCIR also has promotion and dereliction rules �on the left�
�Passi�cation and Activation rules�� The main challenge of our reconstruction
algorithm is in handling the left�rules �which are necessarily implicit in the
syntax�� while Wadler
s algorithm is concerned with making the right�rules im�
plicit� This probably accounts for the di	erences in the constraint maintenance
in the two algorithms� While we need to associate constraints with individ�
ual free identi�ers� Wadler
s algorithm requires a single global constraint per
judgement�
On the other hand� it would also be desirable to make the right�promotion

and dereliction rules implicit in the SCIR syntax� Were we to do so� one would
expect that some features of the Wadler
s algorithm would resurface in the
context of SCIR�

� Conclusion

We have presented a type reconstruction algorithm for Syntactic Control of
Interference� The algorithm is derived in a logical fashion via an inference
system SCIRK that has unique derivations for terms� This system is shown
sound and complete with respect to the original type system�
We have implemented a prototype of the type reconstruction algorithm in

Prolog �using naive boolean simpli�cations�� As a measure of the complexity
of types inferred� we considered the index

number of atomic formulas in kind constraints

number of type variables

and found it to be in the range �!� for typical library functions� Thus the
complexity of inferred types is within practical limits�
A topic for future research is to incorporate let�based polymorphism in the

style of ML� This would involve incorporating kind constraints in the syntax
of type schemes as in ��� p���� p����
��� ��� The intriguing feature of such
type schemes is that the kind constraint sometimes refers to free type variables
��� as well as bound type variables ���� More work is needed to understand
the implications of this feature�
Further work also remains to be done in making various coercions implicit�

Programming convenience demands that the derelict operator and the deref�
erencing operator should be omitted and the same projection operators should
be usable for both tensor products and cross products� A more ambitious goal
would be to make the promotion operator implicit� All such implicit syntac�
tic features would increase the number of possible typings for terms and� very
likely� the complexity of the type scheme syntax as well�

References

��� K� Chen and M� Odersky� A type system for a lambda calculus with
assignments� In M� Hagiya and J� C� Mitchell� editors� Theoretical Aspects
of Computer Software� volume ��� of LNCS� pages ���!�
�� Springer�
Verlag� �����

��� J��Y� Girard� Linear logic� Theoretical Comput� Sci�� ����!���� �����

��� J��Y� Girard� On the unity of logic� Annals of Pure and Appl� Logic�
������!���� �����

��� J�C� Guzman and P� Hudak� Single�threaded polymorphic lambda calcu�
lus� In Proceedings� Fifth Annual IEEE Symposium on Logic in Computer
Science� pages ���!���� IEEE Computer Society Press� June �����

��� C� A� R� Hoare� Procedures and parameters� An axiomatic approach� In
E� Engeler� editor� Symp� Semantics of Algorithmic Languages� volume
��� of Lect� Notes Math�� pages ���!��
� Springer�Verlag� �����

�
� J�M� Lucassen and D�K� Gi	ord� Polymorphic e	ect systems� In ACM
Symp� on Princ� of Program� Lang�� pages ��!��� �����

��� I� Mackie� Lilac� A functional programming language basedon linear logic�
J� Functional Program�� ��������!���� Oct �����

��� R� Milner� A theory of type polymorphism in programming� J� Comput�
Syst� Sci�� ������!���� �����

��� M� Odersky� D� Rabin� and P� Hudak� Call by name� assignment and the
lambda calculus� In Twentieth Ann� ACM Symp� on Princ� of Program�
Lang� ACM� �����

���� P� W� O
Hearn� A� J� Power� M� Takeyama� and R� D� Tennent� Syntactic
control of interference revisited� In S� Brookes� M� Main� A� Melton� and
M� Mislove� editors� Mathematical Foundations of Programming Semanat�
ics� Eleventh Annual Conference� volume � of Electronic Notes in Theor�
Comput� Sci� Elsevier� �����

���� S� L� Peyton Jones and J� Launchbury� State in Haskell� J� Lisp and
Symbolic Comput�� ���
� �to appear��

���� S� L� Peyton Jones and P� Wadler� Imperative functional programming�
In Twentieth Ann� ACM Symp� on Princ� of Program� Lang� ACM� �����

���� G� J� Popek et� al� Notes on the design of EUCLID� SIGPLAN Notices�
��������!��� �����

���� U� S� Reddy� Passivity and independence� In Proceedings� Ninth Annual
IEEE Symposium on Logic in Computer Science� pages ���!���� IEEE
Computer Society Press� July �����

���� U� S� Reddy� Global state considered unnecessary� An introduction to
object�based semantics� J� Lisp and Symbolic Computation� ���
� �to
appear���

��
� J� C� Reynolds� Syntactic control of interference� In ACM Symp� on Princ�
of Program� Lang�� pages ��!�
� ACM� �����

���� J� C� Reynolds� The essence of Algol� In J� W� de Bakker and J� C�
van Vliet� editors� Algorithmic Languages� pages ���!���� North�Holland�
�����

���� J� C� Reynolds� Idealized Algol and its speci�cation logic� In D� Neel�
editor� Tools and Notions for Program Construction� pages ���!�
�� Cam�
bridge Univ� Press� �����

���� J� C� Reynolds� Syntactic control of interference� Part II� In Intern� Colloq�
Aut�� Lang� and Program�� volume ��� of LNCS� pages ���!���� Springer�
Verlag� �����

���� V� Swarup� U� S� Reddy� and E� Ireland� Assignments for applicative
languages� In R� J� M� Hughes� editor� Conf� on Functional Program� Lang�
and Comput� Arch�� volume ��� of LNCS� pages ���!���� Springer�Verlag�
�����

���� J��P� Talpin and P� Jouvelot� The type and e	ect discipline� Inf� Comput��
����������!��
� Jun �����

���� P� Wadler� Is there a use for linear logic� In Proc� Symp� on Partial
Evaluation and Semantics�Based Program Manipulation� pages ���!����
ACM� ����� �SIGPLAN Notices� Sep� ������

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

