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Abstract

We present a type reconstruction algorithm for SCIR [10], a type system
for a language with syntactic control of interference. SCIR guarantees
that terms of passive type do not cause any side effects, and that dis-
tinct identifiers do not interfere. A reconstruction algorithm for this type
system must deal with different kinds (passive and general) and different
uses of identifiers (passive and active). In particular, there may not be a
unique choice of kinds for type variables. Our work extends SCIR typings
with kind constraints. We show that principal type schemes exist for this
extended system and outline an algorithm for computing them.

1 Introduction

Researchers interested in functional programming languages have recently turned
their attention to extending these languages with suitably-controlled state ma-
nipulation facilities [20, 9, 1, 12, 11]. This effort has brought into focus the
pioneering work of Reynolds [16, 17, 18] in the late 70’s and early 80’s, devoted
to the analysis and refinement of imperative programming languages using
“functional programming principles” (lambda calculus and its equivalences).
In retrospect, Reynolds’s work may be seen to have addressed two significant
issues. In designing a higher-order programming language with imperative fea-
tures, (i) how does one retain the functional reasoning principles (such as the
equivalences of lambda calculus), and (ii) how does one retain the imperative
reasoning principles (such as Hoare logic)? Part of the answer to (i) was already
contained in the design of Algol 60 with its call-by-name parameter mechanism,
and Reynolds’s work brings this to the forefront [17]. This part of Reynolds’s
analysis is adopted ipso facto in the recent work in functional programming.
The other part of the answer to (i) as well his answer to aii) are contained
in Reynolds’s “Syntactic Control of Interference” or SCI [16]. Unfortunately,
these ideas of Reynolds have had little impact on the afore-mentioned work in
functional languages, though they are clearly applicable. We explain the two
aspects of SCI in turn.

How does one retain functional reasoning principles? In defining a function
procedure that returns, say an integer, one often wants to use an algorithm
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that creates local variables and manipulates them internally.! To preserve the
standard reasoning principles of integers, the procedure should only manipu-
late local variables without making any changes to the global variables. But,
most programming languages have no checks to ensure this. Consequently,
terms of type integer may well involve global state changes (often called “side
effects”), thwarting standard reasoning about integers. Reynolds’s proposal in
SCI contains a comprehensive treatment of this issue via a classification of types
into active and passive types. Computations of passive types (like integer) are
guaranteed not to have any global side effects so that standard reasoning is
applicable.

How does one retain imperative reasoning principles? The usual reasoning
principles of imperative programs tend to assume that distinct identifiers do
not interfere, i.e., using one identifier in a computation does not affect the
meaning of the other identifier. Aliasing is a common example of interference
where two identifiers happen to denote the same (mutable) variable. Aliasing
is explicitly ruled out in the usual formulations of Hoare logic [5, 13]. However,
other kinds of interference arise in languages with (higher-order) procedures.
For instance, if a procedure p modifies a global variable z, calling p interferes
with z. Again, Reynolds gives a comprehensive set of rules to guarantee that
distinct identifiers do not interfere.

Unfortunately, Reynolds notes that there is a problem with his rules in that
a legal term can be reduced to an illegal term via the standard reduction rules
of lambda calculus. (“Subject reduction” fails.) Some of the type systems
proposed for functional languages with imperative features [20, 1] have this
problem as well. The problem remained unresolved for over a decade until,
recently, O’Hearn et al. [10] proposed a revised type system in “Syntactic
Control of Interference Revisited” (SCIR). Their proposal uses modern proof-
theoretic techniques inherited from linear logic and logic of unity [2, 3], and
possesses the subject reduction property. We should note that Reynolds himself
presented a solution to this problem [19], but it goes much beyond the original
proposal by involving conjunctive types. We do not pursue the new Reynolds
system in this paper as SCIR is a simpler system applicable to a wide range of
programming languages and type systems.

Modern functional programming languages, pioneered by Milner’s work on
ML [8], possess type reconstruction systems, where the programmer is allowed to
omit type declarations and the compiler fills in this information in the most gen-
eral fashion. The adoption of SCI type regimen to these languages necessitates
a type reconstruction system. In this paper, we present a type reconstruction
algorithm for SCIR.

The SCIR type system is unorthodox in that it involves two separate zones
(“passive” and “active” zones) in the typing judgements. This corresponds to
the fact that the free identifiers of a term are classified into two classes. The
movement of the identifiers between zones depends on the types of the subterms
where the identifiers occur, which in turn depends upon certain zones being
empty. Thus, it is by no means obvious that type reconstruction is possible for
SCIR.

Moreover, the type reconstruction algorithm has to account for the fact

!Throughout this paper, we use the term “variable” for mutable variables. Variables in
the sense of lambda calculus are called “identifiers.”



that there are two kinds of types (general types and passive types) in the
type system. Correspondingly, type schemes must keep track of the kinds of
type variables. The choice between the kinds of type variables is not always
unique. For instance, the term Af. Az. fxxz has the “principal” type scheme
(¢ > a = 8) = a — [ but is legal only if either a or 3 is passive. To get
around this difficulty, we associate kind constraints with type schemes, which
are boolean constraints specifying possible kinds of type variables. For example,
the type of Af. Az. fzx may be expressed as:

passivea Vpassive3 = (a2 a—08) 2 a— 0

With this adaptation, we show that principal type schemes exist for SCIR and
give an algorithm to compute them.

1.1 Related Work

While a large body of work exists in type reconstruction algorithms, we do not
know of any systems where kind constraints are involved.

Some work similar to ours is that on type reconstruction for linear logic-
based type systems [22, 7] and the related system of single-threaded lambda
calculus [4]. Constraints like ours occur in these systems, though they are not
concerned with kinds. A further difference is that there is no type rule similar
to Passification in these systems, but this rule is central in SCIR.

Our research also resembles the work on effect systems and their reconstruc-
tion algorithms [6, 21], but it is hard to make a detailed comparison because
those systems are designed for call-by-value languages whereas SCI is designed
for lambda calculus-based call-by-name languages.

2 Issues in SCI

As mentioned in Introduction, SCI is concerned with two issues:
1. ensuring that passive-typed computations have no side effects, and
2. ensuring that distinct identifiers do not interfere.

In this section, we motivate these issues and discuss the challenges they pose
for designing a formal type system.

As mentioned in Introduction, we would like to permit integer-typed expres-
sions which allocate and manipulate local state. Consider an operator of the
form do[int] z. C where  is a bound identifier of type var[int] and C is a com-
mand term. Its semantics is to allocate a local variable bound to z, execute C
in its context and, finally, return the content of z as the value of the expression.
Such an expression form arises, for example, in the analysis of “function proce-
dures” of Algol 60. Similar expression forms have been proposed for functional
languages: the Obs-elim rule of Imperative Lambda Calculus [20], the pure
operator of Ay, (9] and the runST operator of Glasgow Haskell [11]. To ensure
that such an expression is well-behaved, one must verify that the embedded
command C' has no global effects other than to the variable z. A naive design
is to classify types into passive types (like int) and active types (like comm



and var[int]) and then insist that all {ree identifiers of C other than z are of
passive types. Rules similar to this are used in Imperative Lambda Calculus
and the type system for A,qr [20, 1]. Unfortunately, this naive design runs into
the problem of subject reduction.

Consider the terms:

(M) Az:int.dofint] . 7 := = : int — int
(Ny) m (v, vi=lv+1) : int

where 7 is the first projection and ! is a dereferencing operator for variables.
Both terms are legal. (The body of do has no free identifiers of active types
other than r.) Hence, the application (M7 Ny) should be a legal term. However,
beta-reduction of (M;N;) yields:

(Py) dofint] r. r := m{lv, v:=lv+ 1)

where the body of do contains the free identifier v of active type var[int]. This
term is illegal with the naive rule for do and subject reduction fails.

Intuitively, the term P; may be considered legal because under a call-by-
name semantics the assignment v := lv+1 will never be executed, and no global
state changes take place during the evaluation of P;.

To avoid the subject reduction problem, Reynolds classifies occurrences of
free identifiers as active or passive. A free occurrence of z in a term is considered
passive if it is in a passive-typed subterm; otherwise, the occurrence is active.
The term do[int] z. C is legal if all free identifier occurrences in C other than
x are passive occurrences. Since all occurrences of v in P; are in the subterm
m1(lv, v:=lv + 1) which is of passive type int, P; is legal.

To ensure that distinct identifiers do not interfere, SCI requires that in any
application term (M N), the function term M and the argument term N do not
interfere. This means, in essence, that the respective computations of M and N
can proceed concurrently and the results are still determinate. One can make
this fact explicit by adding a non-interfering parallel composition operator

-||-: comm — comm — comm

so that C || Cs is a command that runs C; and Cj in parallel.

How should we decide if M and N are non-interfering? Since we have
already decided to focus on occurrences of free identifiers, we might insist that
all common free identifiers of M and N should have only passive occurrences
in these terms. If # is used actively in M, then # may not appear in N (even
passively). Yet, this design runs into the subject reduction problem. Consider

the terms:
(Ms) Ac:comm. 7 := 7 (lv, v:=0]|¢)
(N2) w:=m{lv, v:=1)

The only common free identifier is v and all its occurrences are passive. Hence,
the application (M, N;) is legal. However, beta-reduction yields:

(Py) ri=m (v, v:i=0||w:=m(lv, v:i=1))

Here, the second component v := 0||w := m(lv, v := 1} is not legal in
Reynolds’s system because v has an active occurrence in the subterm v := 0.



Again, intuitively, this term should be legal because the assignment v := 0 and
the inner assignment v := 1 will never be executed.

This problem has proved sufficiently intricate that it remained unsolved for
over a decade. The solution due to O’Hearn et al. [10] is obtained by using an
explicit contraction rule (together with a clear separation of passive and active
free identifiers). The term

(PZI) rIi=Tm <!U, v:=0 ”w = 7T1<!v’, o = 1>>

is clearly legal. Since all occurrences of v and v’ in Pj are are passive occur-
rences, one can use a Contraction step to rename v’ to v and obtain the term
Ps.

This example shows how a legal term may have seemingly illegal subterms.
The legality of the subterm v := 0||w := m{lv, v := 1) cannot be decided by
looking at the subterm alone. One must appeal to the fact that the subterm
occurs in an overall context of a passively-typed term.

The type system is sufficiently intricate that its soundness is by no means
obvious. One must demonstrate soundness by exhibiting an adequate seman-
tic model that has a reflective subcategory of passive types. Several semantic
models with this property are now available [14, 15, 10]. So, the soundness is
not in question.

3 The SCIR Type System

The type terms of SCIR have the following context-free syntax:

data types § = int|bool
types 6 §|var[f] |comm |9 x0|0Q0|0—>0|0—,0

Data types are types for values storable in variables. A data type § used as
a type denotes expressions producing §-typed values (sometimes written as
exp[d]). The type of commands is represented by comm. There are two kinds
of product types: the components of a cross pair (x) may interfere with each
other, but the components of a tensor pair (®) may not. The type var[d] can
be thought of as an abbreviation for (§ — comm) X §. Passive functions, which
do not assign to any global variables, are given a special type constructor —.
Passive types ¢ form a subset of the set of types:

¢:=06¢R@¢|dxP|0>¢|0—p0

A term with a passive type cannot modify any global variables, so it cannot
affect the outcome of any other term.

Typing judgements are of the form I | T'F M: 6 where M is a term, and 6
its type. The type context is partitioned into the passive zone Il and the active
zone I', which contain the passive free identifiers and the active free identifiers
of M respectively. The passive free identifiers can only be used passively, i.e.,
in passive-typed subterms. Note that the types assigned to identifiers by Il do
not have to be passive.

The typing rules are shown in Figure 1. Identifiers can only be moved from
I to II when M has a passive type (Passification). There are no restrictions



Axiom

|z:0F z: 0

Mm|T, z:0+-M:¢ I, z:6 | T+ M:0'
Passification Activation
I, z:6 |T+-M:¢ |, z:6FM:6
I|THM:6 I|THFM:6
Weakening _——
o, |T, T+ M:0 Im|THM:6
I, z:0,2":6 | T+ M:6
I, 26|+ Mz/z']:6'
IMT-M:6, TI|TF N:6, ! IMTHM:6; x 8

Exchange

Contraction

X E; (i:l,z)
II|TF (M,N):6; x 6, II| T+ mM:0;
H1|F1|_M201 H2|F2|—N:02 H|F|‘M91®92
QI E; (i=1,2)
H17H2|F1,F2|_M®N:91®92 H|I‘|_7T;®M91
H|I‘,x:91I—M:92 I H1|I’1|—M:01—>92 H2|F2|_N191
— —
H|F|_)\£E01M61 —)02 H17H2|F17F2|_MN202
| - M:0;, — 6, | TFM:0; =, 0,
—p —p B

Il | F promote M:6; —, 0, IT | T+ derelict M:60; — 6

Figure 1: SCIR Typing Rules

on the Activation rule, so identifiers can move from II to I' at any time. The
x I rule allows unrestricted identifier sharing, but ® and — FE both require
disjoint type contexts in the hypotheses. Sharing is only achieved through
Contraction, which allows passive free identifiers to be used multiple times in
a term. Finally, note that I' must be empty in —, 1.

We can use these basic types to define several constants useful in “real”
programming languages such as Idealized Algol. For example,

=5 : var[§] X § - comm assignment)
Is : var[d] =6 dereference)
news : (var[§] - comm) — comm (local variable creation)

; :

I ; comm ® comin — comm parallel composition)
dos : (var[§] —, comm) — § block expression)
recg : (8 —-p,0)—0 (recursion)

(
(
(
comm X comm — comm  (sequential composition)
(
(

We will use new[d] z. M, do[d] z. M and rec[f] z. M as syntactic sugar for
new; Az: var[6].M, dos (promote Az: var[§].M) and recy (promote Az:0.M)
respectively.




C(T;z) = let 6 =lookup(z,T)
in passify(0,{z},0,0)

C(T;xz:0'.M) = let (0,A,P,E)=C(TU{z:80'};M)
in if # € F then error

else (' 5 0,A— {z},P— {z},E)

C(I;MN) = let (0'—>0,A:,P,E)=C(I;M)
(9,,A27P2,E2):C(F;N)
E=(ANA)U(ANP)U(PiNA) U (E1UE)

in passify(0, (41 UAy) — E,(PLUP,)— E,E)

C(F7<M7N>) = let (91,A1,P1,E1):C(I‘;M)
(027A27P27E2) = C(FvN)
P'=(P,UP)— (PN As) — (P, N A)
in (01 X02,A1UA2,P,E1UE2)

C(T;mM) = let (0; x6:,A,P,E)=C(I';M)
in passify(6;, 4, P, E)

C(T;promote M) = let (6, — 62,0, P,0)=C(T; M)
in (91 —>p 02,®,P,@)
O(T;derelict M) = let (8; =, 02, A, P, E) = O(T; M)
in (01—)92,A,P,E)
. _ (0,0, AUPUE,D) if 0 is passive
passify(6, 4, P, E) = { (0,A,P,E) otherwise

Figure 2: Type Checking Algorithm for SCIR

4 Type Checking

The main issue in type checking for SCIR is the noncompositionality of the type
system: a term M may be well-typed in some context I', even if its subterms
seemingly are not. For example, given c: comm, the term (3, c|| ¢) is typable,
but the subterm c|| ¢ is not. Our approach is to keep track of the free identifiers
in a term M that are used actively, but must be passified (and contracted)
because of sharing. If M occurs in the context of a larger passive term, then all
its free identifiers have passive occurrences. Otherwise, the sharing is illegal.

An outline of an SCIR type checking algorithm C is shown in Figure 2.
Given a set of type assumptions I of the form {z1:61,22:02,...,2,:6,} and a
term M, C(I', M) returns either error or a quadruple (8, A, P, E). The type
of M is 8, and A, P and FE form a partition of the free identifiers of M such
that:

e A contains the non-shared, actively-used identifiers,

e P is the set of identifiers (which may be shared) that are used passively,




and
e F contains shared identifiers that are used actively.

A term M is not typable in a context I if the type checker returns error or if
it returns a quadruple where E is not empty. If E is empty, then all sharing is
legal and M is typable.

The algorithm description uses pattern matching to bind variables as well
as to express restrictions on values and types. In a recursive call (9, 4, P, E) =
C(T'; M), each component of the left side must be unifiable with the corre-
sponding component of the right side. The auxiliary function passify moves all
free identifiers to P whenever a term has a passive type.

As an example, the results of type checking the two terms mentioned above
are shown here:

C({c:comm};c||c) = (.cornm;@;@;{c})
C({c:comm};m(3,c||c)) = (int;0;{c};0)

The running time of the algorithm depends on the way sets are represented.
Using ordinary lists, for example, results in a running time of O(n?), where n
is the length of the term.

5 Type Reconstruction

Extend the language of terms with untyped lambda terms of the form Az. M.
Given a term M in the extended language, type reconstruction is the problem of
finding a well-typed term M’ in the original language such that M is obtained
by erasing some or all type declarations in M'. As is well-known, such a term
M’ is not unique. One must use type variables to cover all possibilities.

A type scheme p is a type term which can possibly contain type variables
a. Recall that SCIR distinguishes the subset of passive types from the set
of all types. How do we tell whether or not a type variable o represents a
passive type? We define two kinds (second-order types), Passive and Type,
corresponding to the two classes. We write « :: k to indicate that type variable
o has kind . Given a kind assignment K for the set of type variables occurring
in u, we can determine if p is passive or not. The SCIR type system can be
extended to type schemes using kind assignments.

An SCIR type reconstruction algorithm is responsible for deducing both
missing type information as well as a kind assignment for the type variables.
Unfortunately, a typing judgement may be valid under several kind assign-
ments. For example, the term Af. Az. fex can be typed under two different
kind assignments, as shown in Figure 3. If o :: Passive, then = and &' can
be passified immediately after they are introduced. On the other hand, if
(3 :: Passive, then = and z' can be passified after — E. In both cases, the two
identifiers can be contracted, so fxx is typable.

To get around this difficulty, we use kind constraints, boolean constraints
which represent the class of all kind assignments under which a term is typable.
Let p be a unary predicate with the semantics that p(u) means p is passive.
When p is a ground type, p(¢) can be simplified to true if p is a passive type,



|z:a bk 2:a

Pass. _—
| ffasa—=BF fia—sa— 0 za| Fza |m’:a|—m':aP
——— Pass.
za|lfiasa>spF fria—p zia| Faza
- B
za,za| fia—>a—BF fza': B
Contraction
zia|fia>a— BF fex: 3
| FAf Az fezi(a s a—=08) > a— P
| frasa—-BF fiasa—0 |z:a bk 2:a
N —
| ffasa—>p,zalk fria—> g |z":a bz«
- FE

| frfa—a— B, z:a,z:ak fez': 8

Pass. (twice)
za,za| fia—sa— BF fza':8 ]
Contraction

za|fiaosa— fF foe: g
| l—)\f.)\w.fmm:(a—>a—>ﬂ)—>a—>ﬂ_>

Figure 3: Derivations for Af. Az. fez when o :: Passive (top) and when g ::
Passive (bottom).

and false otherwise. For type variables , p(e) is true under a kind assignment
K if (o :: Passive) € K. Simplifications are shown below:

p(6) = true
p(var[d]) = false
p(comm) = false
p(p X pa) = p(pa) Ap(p2) (1)
p(p ® p2) = p(p1) Ap(p2)
p(pr = p2) = p(p2)
p(p1 —p p2) = true

Kind constraints are described by the following grammar:
C ::=true | false | p(p) | CVC'|C A C!

A constraint C'is satisfiable if there exists some kind assignment K under which
C can be simplified to true.

To support type reconstruction, we define a modified type system SCIR g
which maintains kind constraints for type variables. A judgement is of the form
At M:p [G] where the assumption list A is of the form

z1:vy [P1;Ch), oovy Tivn [Pa; Chl

and P;, C; and G stand for kind constraints. Sometimes we also use the vector
notation Z: 7 [P; C] to represent an assumption list. FEach identifier z; in the




Axiom

z: p [p(p); true] F z: p [true]

A, z:p [P;C ¢ M:ps [G] At M:ps [G]
—1TI —I' (znotin A)

AbFXz.M:p1 = pe [GAC) Ab Az M:p1 — pe [G]

—

7.7 [P0, i:01 [Pr;Cal b Mipy — pe [G1] &7 [P5CY, 20 [Po; Ca] F Nipy [Gs]

&:7 [P0, A b M:py [Gh] &7 [P;C, Az b N:ps [Gs]
—— === ®1
TV [PAP;PAP, A1, As - M Q N:p1 Q@ p2 [G1 A G2
a’c':D'[ﬁ;C_"]I—M:pl(@uz [G]
— : : 8 (i =1,2)
0 [PV p(pi); OV p(ps)] b mi” M: i [G]
#:7 [P;C), Ay b M:py [G1] @7 [P';C7), Az F N: pp [Ga] ;
= Era— = X
f:ﬁ[P/\P';C/\C'],AhAz"(M,N):,LtlX,LLz [G1/\G2]
f:ﬁ[ﬁ;C_"]I—M:y.lxy.z [G]
- e — XEi (1:1,2)
0 [PV p(ps); OV p(ps)] b miM: pi [G]
0 [P;C - M:p1 — ps [G] AF M:py =, ps [G]

— 1 -
U [m;m] F promote M: i —p g2 [G A (/\ P)] A F derelict M: p; — p2 [G] ’

Figure 4: Type rules for SCIR .

list is associated with a passification constraint P; and a contraction constraint
C;. The constraint G is called the global constraint. (We also refer to these
as the P-constraint, C-constraint, and G-constraint respectively.) A judgement
AF M:u [G] can be read as “The term M has type p in the assignment A,
as long as the constraint G and all contraction constraints in A hold. Further,
all free identifiers * whose passification constraints in A hold are passive free
identifiers.” From this reading, it is clear that the P-constraint is what is
needed for an identifier to be passified, whereas C- and G-constraints arise
from identifiers that have already been passified. The difference between C-
and G-constraints is that they typically refer to occurrences of free and bound
identifiers respectively.

The type rules of SCIR g are shown in Figure 4. There is some notation that
should be explained. For ® and x I, the environments A; and As have disjoint
domains. Similarly, § and 2 are disjoint in the — FE rule. Identifiers common
to both hypotheses are represented by &, although the type and constraint
information may differ in each hypothesis.

Boolean operations on constraint vectors can be defined straightforwardly.




IfP=P,...,P,and P =P/, ..., P!

no

PV p(u

—

BPAP

~—
|

Pl Vp(:u)a---aPan(p’)
P AP,...,P,ANP.

<

Also, frue is a vector of trivially satisfiable constraints.
Note the following facts about the SCIR g system:

1. The rules are syntax-directed. Given a term M, there is at most one
derivation for M. (Although there are two rules — I and — I' for
deriving Az.M, only one is applicable depending on whether or not x
occurs free in M.)

2. There are no structural rules. All the identifiers of an assumption list A
occur in the term M in a derivable judgement.

3. For every identifier « in an assumption list of a derivable judgement, the
passification constraint logically implies the contraction constraint.

4. For every derivable judgement A - M: i [G], the constraint p(u) logically
implies every passification and contraction constraint in A.

The first two facts mean that we can devise a type reconstruction algorithm for
SCIR k in the standard fashion (using unification in the Hindley-Milner style).

5.1 Explanation

The passification constraint of an identifier specifies the condition necessary for
that identifier to be passified. The constraint will simplify to true if and only if
all occurrences of the identifier appear in passively-typed subterms. This con-
straint may become weaker as the derivation progresses—in particular, through
applications of the xF;, ® F; and — F rules. Intuitively, this corresponds to
situations where the identifier appearsin the context of a larger, passively-typed
term.

The contraction constraint of an identifier is similar to its passification
constraint, but represents conditions arising from occurrences that have al-
ready been contracted. Hence, the contraction constraints must necessarily
hold for the term to be well-typed. Like passification constraints, contraction
constraints may become weaker as the derivation progresses.

The global constraint records the conditions that cannot be weakened fur-
ther in the rest of the derivation. If the global constraint of a term M is false,
then there are identifiers in M that must be passified but cannot be, regardless
of M’s context. Neither M nor any term containing M is typable.

The following derivations illustrate the key aspects of SCIRk. First, the



term Ac: comm. 71 (3, ¢ || ¢) can be typed as shown below:

Axiom

I (1)
xI
XEl

c: comm [false; true] - c: comm [true]

¢: comin [false; false] - ¢|| c: comm [true]

c: comun [false; false] F (3, ¢|| ¢): int X comm [true]

¢: comn [true; true] F 71(3, c|| ¢): int [true]

F Ac: comm. 71 (3,¢|| ¢): comm — int [true]

(Recall that p(comm) is false, while p(int) is true.) The subterm c|| ¢ appears
to be illegal, but it may safely occur within any passively-typed term, in which
case the contraction constraint on ¢ is weakened and becomes satisfiable.

The next example shows that the term Ac: comm. (¢|| ¢) is illegal indepen-
dent of its context.

Axiom

| (®1)

c: comm |[false; true] - c: comm [true]

c: comm [false; false] F c|| c: comm [true]

F Ac:comm. (¢|| ¢): comm — comm [false]

Once the identifier ¢ becomes lambda-bound, it is no longer free and cannot
be passified. The global constraint will be false in any continuation of this
derivation.

As an intricate example, consider Af.Ag. Az. f(m1z @ miz); g(m22z). Define
p=a®a— command v =3 — comm. The two immediate subterms can
be typed as follows:

[:p [false; true], z:a x G [p(a);p(a)] F f(miz @ miz): comm [true]
g:v [false; true], z: a x B [p(B); true] F g(w2z): comm [true]
Applying XI to these two judgements only affects the constraints of .

[: p |false; true], g: v [false; truel, z: o x 8 [p(@) A p(8); p(c)]
F f(mez ® mz); g(mez): comm [true]

The passification and contraction constraints of z are different because only
the first two occurrences of @ are contracted. The third occurrence does not
have to be contracted due to the XI rule. From this judgement we can derive
the principal typing:

FAf Ag. Az, f(me @ ma);g(meez):pp — v — (a X 3) —» comm [p(c)]

Finally we outline a derivation for the term Af. Az. fzx mentioned at the
beginning of this section. The first application of = FE is straightforward and
results in the judgement

fia = a— B [p(B);true], z:a [p(a) V p(B); true] F fz:a — 3 [true]



Applying fz to # and continuing the derivation:

fra = a— B [p(B);true], z:a [p(a) Vp(B);p(e) Vp(B)] F fee: B [true] N
fia = a— B [p(B);true] F Az. fez:a — 8 [p(a) V p(F)] N
FAf ez fee: (o > a— B) > a— S p(a) Vp(B)]

The term is typable in any kind assignment which maps a or 8 (or both) to
the kind Passive.

5.2 Soundness

A type substitution o maps type variables to types. By (A F M:u [G]) we
mean the type judgement obtained by applying ¢ to all type terms in the
judgement. We call the result an instance of the original judgement. An SCIR

judgement IT | T' - M': 0 is said to be an instance of AF M:p [G] if thereis a
type substitution ¢ such that

1. M = erase(M'),

2. 0(AF M:p [G]) is the same as IT | T' = M': 6 except for the constraints
and type declarations in M', and

3. in o(AF M:p [G]), the global constraint, all the C-constraints, and the
P-constraints of all identifiers in dom(II) simplify to true.

An eztension of a judgement A F M:p [G] has the form Z: 7 [tr—>ue; m], Ak
M : u [G] (obtained by adding identifiers with trivial constraints). An SCIR
judgement IT | T' - M': 0 is said to be covered by an SCIRk judgement A +

M: u [G] if it is an instance of an extension of the latter.

Theorem 1 (Soundness) If the judgement A b M:u [G] is derivable in
SCIRk and covers an SCIR judgement II | T' = M': 0, the latter is derivable in
SCIR.

5.3 Completeness

Lemma 2 If A+ M:p [G] is derivable, then every instance c(A+ M:p [G])
s derivable.

Lemma 3 Ifz:v [P;C], 2":v [P';C'], A+ M:p [G] is derivable, then z:v [P A
PC", AF Mz/z'|: u [G] is derivable, for some C-constraint C".

Proof: By induction on the derivation of the given judgement. If the last
derivation step has two hypotheses, where z appears in one and z' appears in
the other, we can substitute z for ' and derive the conclusion.

Theorem 4 (Completeness) If Il | I'  M':0 is derivable in SCIR, then
there exists a derivable judgement A+ M:p [G] of SCIRk that covers II| T I
M':90.



Proof: By induction on the derivation of II | T' = M':6. Consider the last
derivation step. Some of the key cases are outlined below.

e Passification. By induction, II | z:6', T -+ M':¢ is covered by some
z:v [P;C], A+ M:p [G] using a substitution . Since o(u) is passive,
o(P) holds by fact 4. Thus, the same SCIRg judgement also covers the
conclusion II, z:6' | T - M': ¢.

e Contraction. This follows from Lemma 3.
e ®I. By induction, there exist
A1 E M:py [GY] and As b N:ps [Ga]
which cover
m, | Ty - M"6, and My | Ty = N': 0,
So we can derive
Ay, AsF M @ N:py ® pa [G1 A Ga]

If o1 and o5 are the substitutions by which the SCIR x hypotheses cover
the SCIR hypotheses, then o1 @ o3 covers the conclusion.

e xI. By induction, the hypotheses of xI are covered by
&0 [P;C), Ay - M:p; [G]
and V.
Z:v' [P;C"], As F N: us [Gs]
Since the assumption lists in these judgements both cover I U T', there
exists a most general type substitution oo such that oo(¥) = oo(v'). By
Lemma 2,
oo(2:7 [P;C), A1 b M: py [G4])
and oL
oo(Z:v' [P!;C"], A2 F N:pp [Ga])
are also derivable. Then we can apply the SCIRg X[ rule.

5.4 Reconstruction Algorithm

It is relatively straightforward to translate the type rules into a reconstruction
algorithm K, where
K(M)=(4,u,G)
if and only if
AF M:pu G

is derivable in SCIR x. Whenever two subterms containing a common identifier
z are combined (using — F, ®I, or xI), K must find a most general unifier for
the types of z in the subterms. If no such unifier exists, then the term cannot be
typed. The kind constraints can be simplified using the simplification rules (1)
as well as the laws of boolean algebra. If the G-constraint simplifies to false,
then the term cannot be typed.

The reconstruction algorithm takes exponential time in the worst case, as
in the case of Hindley-Milner type inference.



5.5 Comparison with linear type reconstruction

In [22], Wadler gives a type reconstruction algorithm for a linear type system
based on “standard types.” Our reconstruction algorithm is somewhat reminis-
cent of this algorithm and we have indeed derived significant inspiration from
Wadler’s work. On the other hand our algorithm differs in more ways than
it resembles Wadler’s. In the first place, SCIR is considerably more sophisti-
cated than the linear type system. In addition to the promotion (—, I) and
dereliction (—p E) rules “on the right,” which correspond to !I and !E in the
linear type system, SCIR also has promotion and dereliction rules “on the left”
(Passification and Activation rules). The main challenge of our reconstruction
algorithm is in handling the left-rules (which are necessarily implicit in the
syntax), while Wadler’s algorithm is concerned with making the right-rules im-
plicit. This probably accounts for the differences in the constraint maintenance
in the two algorithms. While we need to associate constraints with individ-
ual free identifiers, Wadler’s algorithm requires a single global constraint per
judgement.

On the other hand, it would also be desirable to make the right-promotion
and dereliction rules implicit in the SCIR syntax. Were we to do so, one would
expect that some features of the Wadler’s algorithm would resurface in the

context of SCIR.

6 Conclusion

We have presented a type reconstruction algorithm for Syntactic Control of
Interference. The algorithm is derived in a logical fashion via an inference
system SCIRg that has unique derivations for terms. This system is shown
sound and complete with respect to the original type system.

We have implemented a prototype of the type reconstruction algorithm in
Prolog (using naive boolean simplifications). As a measure of the complexity
of types inferred, we considered the index

number of atomic formulas in kind constraints

number of type variables

and found it to be in the range 0-1 for typical library functions. Thus the
complexity of inferred types is within practical limits.

A topic for future research is to incorporate let-based polymorphism in the
style of ML. This would involve incorporating kind constraints in the syntax
of type schemes as in VS.p(a) V p(8) = pla, 5]. The intriguing feature of such
type schemes is that the kind constraint sometimes refers to free type variables
() as well as bound type variables (3). More work is needed to understand
the implications of this feature.

Further work also remains to be done in making various coercions implicit.
Programming convenience demands that the derelict operator and the deref-
erencing operator should be omitted and the same projection operators should
be usable for both tensor products and cross products. A more ambitious goal
would be to make the promotion operator implicit. All such implicit syntac-
tic features would increase the number of possible typings for terms and, very
likely, the complexity of the type scheme syntax as well.
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