
Syntactic Control of Interference�

John C� Reynolds
School of Computer and Information Science

Syracuse University

Abstract

In programming languages which permit both assignment and procedures� distinct

identi�ers can represent data structures which share storage or procedures with inter�

fering side e�ects� In addition to being a direct source of programming errors� this

phenomenon� which we call interference� can impact type structure and parallelism�

We show how to eliminate these di�culties by imposing syntactic restrictions� without

prohibiting the kind of constructive interference which occurs with higher�order proce�

dures or Simula classes� The basic idea is to prohibit interference between identi�ers�

but to permit interference among components of collections named by single identi�ers�

�� The Problem

It has long been known that a variety of anomalies can arise when a programming language
combines assignment with a su�ciently powerful procedure mechanism� The simplest and
best�understood case is aliasing or sharing between variables� but there are also subtler
phenomena of the kind known vaguely as �interfering side e�ects��

In this paper we will show that these anomalies are instances of a general phenomenon
which we call interference� We will argue that it is vital to constrain a language so that
interference is syntactically detectable� and we will suggest principles for this constraint�

Between simple variables� the only form of interference is aliasing or sharing� Consider�
for example� the factorial�computing program�

procedure fact�n� f	
 integer n� f

begin integer k

k �� �
 f ��

while k �� n do begin k �� k �
 f �� k � f end

end �

�Work supported by National Science Foundation Grant MCS ��������� and by the Science Research

Council of Great Britain� First appeared in Conference Record of the Fifth Annual ACM Symposium on

Principles of Programming Languages� pages �	
��� Tucson� Arizona� January �	�� ACM� New York�

Reprinted in Algol�like Languages� ed� P� W� O�Hearn and R� D� Tennent� vol� �� pp� ���
��� Birkh�auser�

�		��

Suppose n and f are called by name as in Algol� or by reference as in Fortran� and consider
the e�ect of a call such as fact�z� z	� in which both actual parameters are the same� Then the
formal parameters n and f will be aliases� i�e�� they will interfere in the sense that assigning
to either one will a�ect the value of the other� As a consequence� the assignment f �� will
obliterate the value of n so that fact�z� z	 will not behave correctly�

In this case the problem can be solved by changing n to a local variable which is initialized
to the value of the input parameter
 this is tantamount to calling n by value� But while this
solution is adequate for simple variables� it can become impractical for arrays� For example�
the procedure

procedure transpose�X�Y 	
 real array X�Y

for i �� until �� do for j �� until �� do

Y �i� j	 �� X�j� i	

will malfunction for a call such as transpose�Z�Z	 which causes X and Y to be aliases� But
changing X to a local variable only solves this problem at the expense of gross ine�ciency
in both time and space� Certainly� this ine�ciency should not be imposed upon calls which
do not produce interference� On the other hand� in�place transposition is best done by a
completely di�erent algorithm� This suggests that it is reasonable to permit procedures such
as transpose� but to prohibit calls of such procedures with interfering parameters�

Although these di�culties date back to Algol and Fortran� more recent languages have
introduced new features which exacerbate the problem of interference� One such feature is
the union of data types� Suppose x is a variable whose value can range over the union of the
disjoint data types integer and character� Then the language must provide some construct
for branching on whether the current value of x is an integer or a character� and thereafter
treating x as one type or the other� For example� one might write

unioncase x of �integer� S� character� S�	 �

where x may be used as an identi�er of type integer in S and as an identi�er of type
character in S�� However� consider

unioncase x of �integer� �y ���A�
 n �� x� 	
 character� noaction	 �

It is evident that aliasing between x and y can cause a type error in the expression x � �
Thus� in the presence of a union mechanism� interference can destroy type security� This

�

problem occurs with variant records in Pascal ��� and is only avoided in Algol �� ��� at the
expense of copying union values�

The introduction of parallelism also causes serious di�culties� Hoare ����� and Brinch
Hansen ��� have argued convincingly that intelligible programming requires all interactions
between parallel processes to be mediated by some mechanism such as a critical region or
monitor� As a consequence� in the absence of any critical regions or monitor calls� the parallel
execution of two statements� written S� k S�� can only be permitted when S� and S� do not
interfere with one another� For example�

x �� x� k y �� y � �

would not be permissible when x and y were aliases�

In this paper� we will not consider interacting parallel processes� but we will permit the
parallel construct S� k S� when it is syntactically evident that S� and S� do not inter�
fere� Although this kind of determinate parallelism is inadequate for practical concurrent
programming� it is su�cient to make the consequences of interference especially vivid� For
example� when x and y are aliases� the above statement becomes equivalent to

z �� z � k z �� z � �

whose meaning� if any� is indeterminate� machine�dependent� and useless�

These examples demonstrate the desirability of constraining a language so that variable
aliasing is syntactically detectable� Indeed� several authors have suggested constraints which
would eliminate aliasing completely ������

However� aliasing is only the simplest case of the more general phenomenon of interference�
which can occur between a variety of program phrases� We have already spoken of two
statements interfering when one can perform any action which a�ects the other� Similarly�
two procedures interfere when one can perform a global action which has a global e�ect upon
the other�

Interference raises the same problems as variable aliasing� For example� P ��	 k Q��	
is only meaningful if the procedures P and Q do not interfere� Thus the case for syntactic
detection extends from aliasing to interference in general� However� the complete prohibition
of interference would be untenably restrictive since� unlike variables� interfering expressions�
statements� and procedures can have usefully di�erent meanings�

Both the usefulness and the dangers of interference between procedures arise when proce�
dures are used to encapsulate data representations� As an example� consider a �nite directed
graph whose nodes are labelled by small integers� Such a graph might be represented by

�

giving� for each node n� a linked list of its immediate successors n�� � � � � nk�

n

nodelist item

n�

n�

nk

link

�

�

�

�

This representation is used by the procedure

procedure itersucc�n� p	
 integer n� procedure p

begin integer k
 k �� nodelist�n	

while k �� � do begin p�item�k		
 k �� link�k	 end
end

which causes the procedure p to be applied to each immediate successor of the node n�

If the graph is ever to change� then something�probably a procedure such as �addedge�
or �deleteedge��must interfere with itersucc by assigning to the global arrays nodelist � item�
and link � On the other hand� the correct operation of itersucc requires that the procedure
parameter p must not assign to these arrays� i�e�� that p must not interfere with itersucc�
Indeed� if itersucc involved parallelism� e�g�� if the body of the while statement were

begin integer m
 m �� item�k	

begin p�m	 k k �� link�k	 end

end �

then noninterference between p and itersucc would be required for meaningfulness rather
than just correctness�

Of course� the need for interfering procedures would vanish if the graph representation
were a parameter to the procedures which use it� But this would preclude an important
style of programming�epitomized by Simula �� ����in which data abstraction is realized
by using collections of procedures which interfere via hidden global variables�

In summary� these examples motivate the basic goal of this paper� to design a program�
ming language in which interference is possible yet syntactically detectable� To the author�s
knowledge� the only current language which tries to meet this goal is Euclid ���� The approach
used in Euclid is quite di�erent than that given here� and apparently precludes procedural
parameters and call�by�name�

�

�� The Basic Approach

Before proceeding further� we must delineate the idea of interference more precisely� By a
phrase we mean a variable� expression� statement� or procedure denotation� In the �rst three
cases� we speak of exercising the phrase P � meaning� either assigning or evaluating P if it is
a variable� evaluating P if it is an expression� or executing P if it is a statement�

For phrases P and Q� we write P � Q to indicate that it is syntactically detectable that
P and Q do not interfere� More precisely� � is a syntactically decidable symmetric relation
between phrases such that�

� If neither P nor Q denotes a procedure� then P � Q implies that� for all ways of
exercising P and Q� the exercise of P will have no e�ect on the exercise of Q �and
vice�versa	� Thus the meaning of exercising P and Q in parallel is well�de�ned and
determinate�

�� If P denotes a procedure� A�� � � � � An are syntactically appropriate actual parameters�
P � Q� and A� � Q�� � � � An � Q� then P �A�� � � � � An	 � Q� �Thus P � Q captures
the idea that P cannot interfere with Q via global variables�	

It should be emphasized that these rules have a fail�safe character� P � Q implies that P
and Q cannot interfere� but not the converse� Indeed� the rules are vacuously satis�ed by
de�ning � to be universally false� and there is a probably endless sequence of satisfactory
de�nitions which come ever closer to the semantic relation of noninterference at the expense
of increasing complexity� Where to stop is ultimately a question of taste� P � Q should
mean that P and Q obviously do not interfere�

Our own approach is based upon three principles�

�I	 If I � J for all identi�ers I occurring free in P and J occurring free in Q� then P � Q�

In e�ect� all �channels� of interference must be named by identi�ers� For the language
discussed in this paper� this principle is trivial� since the only such channels are variables�
In a richer language� the principle would imply� for example� that all I�O devices must be
named by identi�ers�

�II	 If I and J are distinct identi�ers� then I � J �

This is the most controversial of our principles� since it enforces a particular convention for
distinguishing between interfering and noninterfering phrases� Interfering procedures �and
other entities	 are still permissible� but they must occur within a collection which is named
by a single identi�er� �An example of such a collection is a typical element in a Simula ���
class� Indeed� the idea of using such collections was suggested by the Simula class mechanism�
although we will permit collections which do not belong to any class�	

�

�III	 Certain types of phrases� such as expressions� and procedures which do not assign to
global variables� are said to be passive� When P and Q are both passive� P � Q�

Passive phrases perform no assignments or other actions which could cause interference�
Thus they cannot interfere with one another or even with themselves� although an active
phrase and a passive phrase can interfere�

�� An Illustrative Language

To illustrate the above principles we will �rst introduce an Algol�based language which�
although it satis�es Principle I� permits uncontrolled interference� We will then impose
Principle II to make interference syntactically detectable� Finally� we will explore the con�
sequences of Principle III�

Unlike Algol� the illustrative language is completely typed� so that reduction �i�e�� appli�
cation of the copy rule	 cannot introduce syntax errors� It provides lambda expressions and
�xed�point operators for all program types� and a named Cartesian product� which is needed
for the collections discussed under Principle II� Procedure declarations� multiple�parameter
procedures� and classes are treated as syntactic sugar� i�e�� as abbreviations which are de�ned
in terms of more basic linguistic constructs�

Arrays� call�by�value� jumps and labels� unions of types� references� input�output� and
critical regions are not considered�

We distinguish between data types� which are the types of values of simple variables� and
program types� which are the types which can be declared for identi�ers and speci�ed for
parameters� The only data types are integer� real� and Boolean� as in Algol� but there are
an in�nite number of program types� Speci�cally� the set of program types is the smallest
set such that�

�T	 if � is a data type� then � var �meaning variable	 and � exp �meaning expression	 are
program types�

�T�	 sta �meaning statement	 is a program type�

�T�	 If � and �� are program types� then � � �� is a program type�

�T�	 If � is a function from a �nite set of identi�ers into program types� then ���	 is a
program type�

A formal parameter speci�ed to have type � var can be used on either side of assignment
statements� while a formal parameter speci�ed to have type � exp can only be used as an
expression� The program type � � �� describes procedures whose single parameter has type
� and whose call has type ��� For example� the Algol procedures

�

procedure p�n	
 integer n
 n �� �

real procedure p��x	
 real x
 p� �� x� x

would have types integer var � sta and real exp � real exp� respectively�

The program type ���	 is a Cartesian product in which components are indexed by
identi�ers rather than by consecutive integers� Speci�cally� ���	 describes collections in
which each i in the domain of � indexes a component of type ��i	� The function � will
always be written as a list of pairs of the form argument � value� Thus� for example� ��inc�
sta� val � integer exp	 describes collections in which inc indexes a statement and val indexes
an integer expression� A typical phrase of this type might be hinc�n �� n�
 val �n� ni�

To simplify the description of syntax we will ignore aspects of concrete representation such
as parenthesization� and we will adopt the �ction that each identi�er has a �xed program
type �except when used as a component index	� when in fact the program type of an identi�er
will be speci�ed in the format I � � when the identi�er is bound�

We write �� id� and ��� to denote the sets of identi�ers and phrases with program
type �� Then the syntax of the illustrative language is given by the following production
schemata� in which � ranges over all data types� �� ��� ���� � � � �n range over program types�
and i�� � � � � in range over identi�ers�

�� exp� ��� �� var�

�integer exp� ��� � j �integer exp���integer exp�

�Boolean exp� ��� true j �integer exp� � �integer exp�

j �Boolean exp���Boolean exp�

�and similarly for other constants and operations on data types	

�sta� ��� �� var� �� �� exp�

�sta� ��� noaction j �sta�
 �sta�

j while �Boolean exp� do �sta�

�sta� ��� new �� var id� in �sta�

��� ��� �� id�

�� � ��� ��� ��� id������

���� ��� �� � ��� ����	

���i����� � � � � in��n	� ��� hi������� � � � � in���n�i

��k� ��� ���i����� � � � � in��n	�� ik

��� ��� if �Boolean exp� then ��� else ���

��� ��� Y��� � ��	

�

Although a formal semantic speci�cation is beyond the scope of this paper� the meaning
of our language can be explicated by various reduction rules� For lambda expressions� we
have the usual rule of beta�reduction�

��I�P 	�Q	 �� P jI�Q

where the right side denotes the result of substituting Q for the free occurrences of I in P �
after changing bound identi�ers in P to avoid con�icts with free identi�ers in Q� Note that
this rule implies call by name� if P does not contain a free occurrence of I then ��I�P 	�Q	
reduces to P even if Q is nonterminating or causes side e�ects� For collection expressions�
we have

hi��P�� � � � � in�Pni� ik �� Pk �

For example�
hinc�n �� n� � val �n� ni� inc �� n �� n � �

Again� there is a �avor of call�by�name� since the above reduction would still hold if n�n were
replaced by a nonterminating expression� The �xed�point operator Y can also be elucidated
by a reduction rule�

Y�f	 �� f�Y�f		 �

In addition to lambda expressions� the only other binding mechanism in our language is
the declaration of new variables� The statement

new I �

�
��

integer
real
Boolean

�
�� in S

has the same meaning as the Algol statement

begin

�
��
integer

real

Boolean

�
�� I
 S end�

By themselves� lambda expressions and new variable declarations are an austere vocab�
ulary for variable binding� But they are su�cient to permit other binding mechanisms to be
de�ned as abbreviations� This approach is vital for the language constraints which will be
given below� since it insures that all binding mechanisms will be a�ected uniformly�

Multiple�parameter procedures are treated following Curry � ��

P �A�� � � � � An	 � P �A�	 � � � �An	 ��I�� � � � � In	�B � �I�� � � � �In�B

and de�nitional forms� including procedure declarations� are treated following Landin ����

let I � Q in P � ��I�P 	�Q	 let rec I � Q in P � ��I�P 	�Y��I�Q		�

�

�However� unlike Landin� we are using call�by�name�	 We will omit type speci�cations from
let and let rec expressions when the type of I is apparent from Q�

As shown in the Appendix� classes �in a slightly more limited sense than in Simula	 can
also be de�ned as abbreviations�

As an example� the declaration of the procedure fact shown at the beginning of this paper�
along with a statement S in the scope of this declaration� would be written as�

let fact � ��n� integer exp� f � integer var	�
new k� integer in

�k �� �
 f ��
 while k �� n do �k �� k �
 f �� k � f		
in S �

After eliminating abbreviations� this becomes

��fact � integer exp � �integer var � sta	� S	
��n� integer exp��f � integer var�

new k� integer in
�k �� �
 f ��
 while k �� n do �k �� k �
 f �� k � f			 �

�� Controlling Interference

The illustrative language already satis�es Principle I� If we can constrain it to satisfy Prin�
ciple II as well� then P � Q will hold when P and Q have no free identi�ers in common� By
assuming the most pessimistic de�nition of � compatible with this result �and postponing
the consequences of Principle III until the next section	� we get

P � Q i� F �P 	 � F �Q	 � fg�

where F �P 	 denotes the set of identi�ers which occur free in P �

To establish Principle II� we must consider each way of binding an identi�er� A new

variable declaration causes no problems� since new variables are guaranteed to be indepen�
dent of all previously declared entities� But a lambda expression can cause trouble� since
its formal parameter will interfere with its global identi�ers if it is ever applied to an actual
parameter which interferes with the global identi�ers� or equivalently� with the procedure
itself� To avoid this interference� we will restrict the call P �A	 of a procedure by imposing
the requirement P � A�

The following informal argument shows why this restriction works� Consider a beta�
reduction ��I�P 	�Q	 � P jI�Q� Within P there may be a pair of identi�ers which are
syntactically required to satisfy the ��relationship� and therefore must be distinct� If so�
it is essential that the substitution I � Q preserve the ��relationship� No problem occurs

if neither identi�er is the formal parameter I� On the other hand� if one identi�er is I�
then the other distinct identi�er must be global� Thus the ��relation will be preserved if
K � Q holds for all global identi�ers K� i�e�� for all identi�ers occurring free in �I�P � This
is equivalent to ��I�P 	 � Q�

More formally� one can show that� with the restriction on procedure calls�

���� ��� �� � �������	 when �� � ��� � ��� �

syntactic correctness is preserved by beta reduction �and also by reduction of collection
expressions	� and continues to be preserved when other productions restricted by � are
added� e�g��

�sta� ��� �sta�� k �sta�� when �sta�� � �sta�� �

The restriction P � A on P �A	 also a�ects the language constructs which are de�ned
as abbreviations� For let I � Q in P � ��I�P 	�Q	� and for let rec I � Q in P �
��I�P 	�Y��I�Q		� we see that� except for I� no free identi�er of Q can occur free in P �
Thus� although one can declare a procedure or a collection of procedures which use global
identi�ers �the free identi�ers of Q	� these globals are masked from occurring in the scope P
of the declaration� where they would interfere with the identi�er I�

For multi�parameter procedures� P �A�� � � � � An	 � P �A�	 � � � �An	 implies the restrictions
P � A�� P �A�	 � A��� � � � P �A�	 � � � �An��	 � An� which are equivalent to requiring P � Ai

for each parameter and Ai � Aj for each pair of distinct parameters�

For example� consider the following procedure for a �repeat� statement�

let repeat � ��s� sta� b� Boolean exp	� �s
 while �b do s	 in � � �

In any useful call repeat�A�� A�	� the statement A� will interfere with the Boolean expression
A�� Although this is permitted in the unconstrained illustrative language� as in Algol� it is
prohibited by the restriction A� � A�� Instead� one must group the interfering parameters
into a collection�

let repeat � �x� ��s� sta� b� Boolean exp	� �x� s
 while �x� b do x� s	 in � � �

and use calls of the form repeat�hs�A�� b�A�i	�

This example is characteristic of Principle II� Although interfering parameters are per�
mitted� they require a somewhat cumbersome notation� In compensation� it is immediately
clear to the reader of a procedure body when interference between parameters is possible�

�

�� Passive Phrases

In making interference syntactically detectable� we have been unnecessarily restrictive� For
example� we have forbidden parallel constructs such as

x �� n k y �� n

or

let twice � �s� sta� �s
 s	 in �twice�x �� x� 	 k twice�y �� y � �		 �

Moreover� the right side of the reduction rule Y�f	 �� f�Y�f		 violates the requirement
f � Y�f	� giving a clear sign that there is a problem with recursion�

In the �rst two cases� we have failed to take into account that the expression n and
the procedure twice are passive� they do no assignment �to global variables in the case of
procedures	� and therefore do not interfere with themselves� Similarly� when f is passive�
f � Y�f	 holds� and the reduction rule forY�f	 becomes valid� This legitimizes the recursive
de�nition of procedures which do not assign to global variables�

�Recursive procedures which assign to global variables are a more di�cult problem�
Within the body of such a procedure� the global variables and the procedure itself are
interfering entities� and must therefore be represented by components of a collection named
by a single identi�er� This situation probably doesn�t pose any fundamental di�culties� but
we have not pursued it�	

The following treatment of passivity is more tentative than the previous development�
Expressions in our language are always passive� since they never cause assignment to free
variables� Procedures may be active or passive� independently of their argument and result
types� Thus we must distinguish the program type � �P �� describing passive procedures
from the program type � � �� describing �possibly	 active procedures�

More formally� we augment the de�nition of program types with

�T�	 If � and �� are program types� then � �P �� is a program type�

and we de�ne passive program types to be the smallest set of program types such that

�P	 � exp is passive�

�P�	 � �P �� is passive�

�P�	 If ��i	 is passive for all i in the domain of �� then ���	 is passive�

Next� for any phrase r� we de�ne A�r	 to be the set of identi�ers which have at least
one free occurrence in r which is outside of any subphrase of passive type� Note that� since
identi�er occurrences are themselves subphrases� A�r	 never contains identi�ers of passive
type� and since r is a subphrase of itself� A�r	 is empty when r has passive type�

Then we relax the de�nition of P � Q to permit P and Q to contain free occurrences
of the same identi�er� providing every such occurrence is within a passive subphrase� We
de�ne�

P � Q � A�P 	 � F �Q	 � fg � F �P 	 �A�Q	 � fg �

Finally� we modify the abstract syntax� We de�ne a passive procedure to be one in which
no global identi�er has an active occurrence�

�� �P ��� ��� ��� id������ when A�����	� f�� id�g � fg�

Passive procedures can occur in any context which permits active procedures

�� � ��� ��� �� �P ��� �

but only passive procedures can be operands of the �xed�point operator�

��� ��� Y��� �P ��	 �

�� Some Unresolved Questions

Our abstract syntax is ambiguous� in the sense that specifying the type of a phrase does not
always specify a unique type for each subphrase� For example� in the original illustrative
language� the subphrase if p then x else y might be either a variable or an expression in
contexts such as

z �� if p then x else y

ha� if p then x else y� b� �i� b

Similarly� the introduction of passive procedures permits the subphrase �s� sta� �s
 s	 to have
either type sta � sta or sta �P sta in the context

��s� sta� �s
 s		�x �� x� 	 �

�

Although these ambiguities could probably be eliminated� our intuition is to retain them�
while insisting that they must not lead to ambiguous meanings� Indeed� it may be fruitful
to extend this attitude to a wider variety of implicit conversions�

In normal usage� a procedure call will be active if and only if either the procedure itself
or its parameter are active� Although other cases are syntactically permissible they seem
to have only trivial instances� Thus it might be desirable to limit the program types of
procedures to the cases�

� �P �� ��P �� � � � �� ��

where � and �� are passive types and � and �� are nonpassive types�

The most serious problem with our treatment of passivity is our inability to retain the
basic property that beta�reduction preserves syntactic correctness� Consider� for example�
the reduction

��p�mixed� �x �� p�a k y �� p� a		�ha�n� � b�n �� �i	
�� x �� ha�n� � b�n �� �i� a k y �� ha�n� � b�n �� �i� a
�� x �� n� k y �� n�

where �mixed� stands for the program type ��a� integer exp� b� sta	� Although the �rst and
last lines are perfectly reasonable� the intermediate line is rather dubious� since it con�
tains assignments to the same variable n within two statements to be executed in parallel�
Nevertheless� our de�nition of � still permits the intermediate line� on the grounds that
assignments within passive phrases cannot be executed�

However� if we accept

x �� ha�n� � b�n �� �i� a � y �� ha�n� � b�n �� �i� a�

then it is hard to deny

��s� sta�x �� ha�n� � b� �n �� � k s	i� a	 � y �� ha�n� � b�n �� �i� a �

But this permits the reduction

��s� sta�x �� ha�n� � b� �n �� � k s	i� a	�y �� ha�n� � b�n �� �i� a	
�� x �� ha�n� � b� �n �� � k y �� ha�n� � b�n �� �i� a	 i� a

�� x �� n�

Here the intermediate step� in which the underlined statement is clearly illegal� is prohibited
by our syntax�

�

This kind of problem is compounded by the possibility of collection�returning procedures�
For instance� in the above examples� one might have silly�n�� n �� �	� where silly has type
integer exp � �sta � mixed	� in place of the collection ha�n� � b�n �� �i�

A possible though unaesthetic solution to these problems might be to permit illegal
phrases in contexts where passivity guarantees nonexecution� A more hopeful possibility
would be to alter the de�nition of substitution to avoid the creation of illegal phrases in such
contexts�

�� Directions for Further Work

Beyond dealing with the above questions� it is obviously essential to extend these ideas to
other language mechanisms� particularly arrays�

In addition� the interaction between these ideas and the axiomatization of program cor�
rectness needs to be explored� We suspect that many rules of inference might be simpli�ed
by using a logic which imposes ��preservation upon substitutions�

A somewhat tangential aspect of this work is the distinction between data and program
types� which obviously has implications for user�de�ned types� �Note the absence of this
distinction in Algol �� ����	 In less Algol�like languages� data types might have as much
structure as program types� and user de�nitions might be needed for both �types� of type�
Indeed� there may be grounds for introducing more than two �types� of type�

Finally� these ideas may have implications for the optimization of call�by�name� perhaps
to an extent which will overcome the aura of hopeless ine�ciency which surrounds this
concept� For example� when an expression is a single parameter to a procedure� as opposed
to a component of a collection which is a parameter� then its repeated evaluation within
the procedure must yield the same value �although nontermination is still possible	� This
suggests a possible application of the idea of �lazy evaluation� �� ���

Appendix	 Classes as Syntactic Sugar

In a previous paper� we have argued that classes are a less powerful data abstraction mech�
anism than either higher�order procedures or user�de�ned types ���� The greater generality
of higher�order procedures permits the de�nition of classes �in the reference�free sense of
Hoare ��� rather than Simula itself	 as abbreviations in our illustrative language� In fact�
the basic idea works in Algol� although the absence there of lambda expressions and named
collections of procedures makes its application cumbersome�

We consider a class declaration with scope S of the form�

class C�DECL
 INIT
 I� � P�� � � � � In � Pn	 in S �	

�

which de�nes C to be a class with component names I�� � � � � In� Here DECL is a list of
declarations of variables and procedures which will be private to a class element� INIT is an
initialization statement to be executed when each class element is created� and each Pk is
the procedure named by Ik� in which the private variables may occur as globals�

Within the scope S� one may declare X to be a new element of class C by writing the
statement

newelement X�C in S� � ��	

Then within the statement S� one may write X� Ik to denote the component Pk of the class
element X�

To express these notations in terms of procedures� suppose P�� � � � � Pn have types ��� � � � �

�n� respectively� Then we de�ne �	 to be an abbreviation for�

let C � �b� ��I����� � � � � In��n	 � sta �
�DECL
 INIT
 b�hI��P�� � � � � In�Pni		

in S �

where b is an identi�er not occurring in the original class declaration� and where DECL must
be expressed in terms of new and let declarations� Then we de�ne ��	 to be an abbreviation
for

C��X� ��I����� � � � � In��n	�S�	 �

As an example� where for simplicity P� and P� are parameterless procedures�

class counter�integer n
 n �� �
 inc�n �� n� � val �n	
in � � �newelement k� counter in � � � �k� inc
 x �� k� val 	

is an abbreviation for

let counter � �b� ��inc� sta� val � integer exp	� sta�
new n� integer in �n �� �
 b�hinc�n �� n� � val �ni		

in � � � counter ��k� ��inc� sta� val � integer exp	� � � � �k� inc
 x �� k� val 		 �

which eventually reduces to

new n� integer in �n �� �
 � � � �n �� n�
 x �� n		 �

In the process of reduction� identi�ers will be renamed to protect the privacy of n�

�

The only e�ect of our interference�controlling constraints is that C must be a passive
procedure� i�e�� INIT and P�� � � � � Pn cannot assign to any variables which are more global
than those declared by DECL� This ensures that distinct class elements will not interfere
with one another� Otherwise� if C is not passive� then S� in the de�nition of ��	 cannot
contain calls of C� so that multiple class elements cannot coexist�

Acknowledgements

Most of this research was done during a delightful and stimulating sabbatical at the Uni�
versity of Edinburgh� Special thanks are due to Rod Burstall and Robin Milner for their
encouragement and helpful suggestions� and to the members of IFIP working group ���� es�
pecially Tony Hoare� for establishing the viewpoint about programming which underlies this
work�

References

�� Wirth� N� The programming language Pascal� Acta Informatica � � �	� pp� ��!���

��� van Wijngaarden� A� �ed�	� Mailloux� B� J�� Peck� J� E� L�� and Koster� C� H� A� Report

on the Algorithmic Language Algol ��� MR �� Mathematisch Centrum� Amsterdam�
February � �

��� Hoare� C� A� R� Towards a theory of parallel programming� In Operating Systems

Techniques �eds� C� A� R� Hoare and R� N� Perrott	� Academic Press� New York� ���
pp� �!��

��� Hoare� C� A� R� Monitors� an operating system structuring concept� Comm� ACM

�� �October ��	� pp� �� !����

��� Brinch Hansen� P� Structured multiprogramming� Comm� ACM �� �July ��	�
pp� ���!����

��� Hoare� C� A� R� Procedures and parameters� an axiomatic approach� In Symposium on

the Semantics of Algorithmic Languages �ed� E� Engeler	� Springer� Berlin�Heidelberg�
New York� �� pp� ��!��

��� Popek� G� J�� Horning� J� J�� Lampson� B� W�� Mitchell� J� G�� and London� R� L� Notes
on the design of Euclid� In Proceedings of an ACM Conference on Language Design for

Reliable Software� SIGPLAN Notices ��� no� � �March ��	� pp� !��

��� Dahl� O��J� and Hoare� C� A� R� Hierarchical program structures� In Structured Pro�

gramming �O��J� Dahl� E� W� Dijkstra� and C� A� R� Hoare	� Academic Press� New York
 ��� pp� ��!����

�

� � Curry� H� B�� and Feys� R� Combinatory Logic� vol� I� North�Holland� Amsterdam ���

��� Landin� P� J� A correspondence between Algol �� and Church�s lambda notation�
Comm� ACM
 �February and March ��	� pp� � !� and ��!���

�� Henderson� P�� and Morris� Jr�� J� H� A lazy evaluator� In Conference Record of the

Third Annual ACM Symposium on Principles of Programming Languages� Atlanta�
Georgia� January ��� ACM� New York� ��� pp� �!���

��� Friedman� D� P�� and Wise� D� S� cons should not evaluate its arguments� In Third

Int�l Colloquium on Automata� Languages� and Programming �eds� S� Michaelson and
R� Milner	� Edinburgh� Scotland� July ��� Edinburgh University Press� Edinburgh�
 ��� pp� ���!����

��� Hoare� C� A� R� Proof of correctness of data representations� Acta Informatica �

� ��	� pp� ��!���

��� Reynolds� J� C� User�de�ned types and procedural data structures as complemen�
tary approaches to data abstraction� In New Directions in Algorithmic Languages ���	

�ed� S� A� Schuman	� INRIA� Rocquencourt� France� ��� pp� ��!���

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

