
Syntactic Control of Interference
Part �

John C� Reynolds�

December ��� ����

CMU�CS�������

School of Computer Science
Carnegie Mellon University
Pittsburgh� PA �	���

This is a preprint of a paper that will appear in the Proceedings of
the ��th International Colloquium on Automata� Languages� and
Programming �Stresa� July ������ ������ to be published in the
Springer	Verlag Lecture Notes in Computer Science

Abstract

In ����� we proposed that Algol	like languages should be constrained so that alias	
ing between variables and� more generally� interference between commands or proce	
dures would be syntactically detectable in a fail	safe manner
 In particular� we pro	
posed syntactic restrictions that prohibited interference between distinct identi�ers�
while permitting interference between quali�cations of the same identi�er
 However�
these restrictions had the unfortunate property that syntactic correctness was not pre	
served by beta reduction

In the present paper� we show how this di
culty can be avoided by the use of a
variant of conjunctive types
 We also give an algorithm for typechecking explicitly
typed programs

�Research supported by NSF Grant CCR��������� A portion of the research was also sponsored by
the Defense Advanced Research Projects Agency �DOD	
 ARPA Order No� ����
 under contract number
F

�������C�����
 monitored by the Air Force Wright Aeronautical Laboratories
 Wright�Patterson AFB

Ohio� The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the o�cial policies
 either expressed or implied
 of any agency of the US
Government�

�� Introduction

Whenever a programming language combines assignment with a su
ciently powerful proce�
dure mechanism� the phenomenon of �aliasing� appears� as well as various anomalies that
are often called �interfering side e
ects�� These are all instances of the general phenomenon
of interference� for example� two �phrases denoting� variables interfere if assigning to either
one can a
ect the value of the other� two commands interfere if either one assigns to a vari�
able that is evaluated or assigned to by the other� and two procedures interfere if either one
assigns to a global variable that is evaluated or assigned to by the other�

Interference is not always undesirable� procedures that manipulate common global vari�
ables are widely used in programming� and collections of such procedures are the essence
of �object�oriented� programming� But it would be desirable to constrain a programming
language so that interference is syntactically detectable �in a fail�safe sense�� In particular�
such a constraint is necessary in a language that provides concurrent processing with shared
variables� in order to enforce the protection of the shared variables by critical regions ��� �� ���

Eleven years ago� in ���� I proposed syntactic constraints to make interference detectable
that were based on three principles�

� If no identi�er occurring free in the phrase p interferes with any identi�er occurring
free in the phrase q� then p does not interfere with q�

In e
ect� all �channels� of interference must be named by identi�ers�

� Distinct identi�ers do not interfere�

One can still have interfering procedures �or other entities�� but they must occur within a
single object or� in other words� be named by di
erent quali�cations of the same identi�er�

� Passive phrases� which perform no assignment or other actions that could cause inter�
ference� do not interfere with one another�

Passive phrases include both �side�e
ect�free� expressions and procedures that do not assign
to global variables�

Unfortunately� the speci�c syntactic constraints described in ��� have the unhappy con�
sequence that certain legal phrases beta�reduce to illegal phrases� In the present paper�
we will use conjunctive types ��� to de�ne constraints� based on the above principles� that
avoid this problem� The essential change is that� instead of focusing on a relation between
phrases �denoted by � in ���� that asserts that the phrases do not interfere� we will focus on
a relation between type assignments �denoted by � and called independence� that asserts
that the capabilities represented by the type assignments cannot cause interference�

�

�� An Illustrative Language

To make our exposition concrete� we will use an Algol�like illustrative language �	� that is
an extended lambda calculus with construction and selection operations for named tuples�
a conditional construct� and some of the various operations for expressions and commands
that are typically found in imperative languages� We will also introduce an operator k
that executes two command concurrently� our goal is to prohibit interference between the
operands of k� so that the semantics of our language will be determinate� �In a more realistic
language� indeterminacy would be permitted� but only under the control of critical regions��

The following productions de�ne the untyped abstract syntax of our language�

hphrasei ��� hidenti�eri identi�ers

j �hidenti�eri� h�nite set of typesi� hphrasei abstraction

j hphraseihphrasei application

j
D
hidenti�eri � hphrasei� � � � � hidenti�eri � hphrasei

E
tupling

j hphrasei�hidenti�eri selection

j if hphrasei then hphrasei else hphrasei conditionals

j � j ��	 j hphrasei � hphrasei expressions

j hphrasei �� hphrasei j hphrasei � hphrasei jwhile hphrasei do hphrasei commands

j hphrasei k hphrasei concurrency

Of course in a real language there would be additional operations for expressions and
commands� but such operations are so similar to those we have included that they would
add nothing but length to our exposition� On the other hand� there are language features�
such as multiargument procedures� let de�nitions� recursion� and variable declarations� that
we have omitted since they are syntactic sugar that can be de�ned in terms of the above
language plus appropriate built�in procedures �	��

This illustrative language is similar to the recently proposed Forsythe language ���� except
that it lacks the escape operator� the merging operation� and the treatment of assignment
as a procedure call that occur in Forsythe�

Notice that lambda expressions contain explicit type information� which will be used to
make typechecking feasible�

�� Types

As in �	� and ���� we distinguish between a data type� such as �integer� and �Boolean��
which denotes a set of values appropriate to some kind of variable� and a phrase type� such
as �integer expression� or �proper procedure accepting an integer expression�� which denotes
a set �or domain� of meanings appropriate to some kind of phrase� �The unquali�ed term
�type� will always mean �phrase type���

�

We assume that the set of data types is equipped with a preorder �data� and say that � is
a subtype of �� when � �data �

�� Speci�cally� we assume that int�eger�� real� and bool�ean�
are data types� and that int �data real�

real

int

bool

More generally� we assume that the set of data types is equipped with two binary operations
�t and �u such that �� �t �� ��� �u ��� is a �nite complete set of upper �lower� bounds of �� and
��� i�e�

If � � �� �t �� then �� �data � and �� �data ��

If �� �data � and �� �data � then there is a �� � �� �t �� such that �� �data ��

If � � �� �u �� then � �data �� and � �data ���

If � �data �� and � �data �� then there is a �� � �� �u �� such that � �data ���

For phrase types� we use the canonical formalism for conjunctive types ���� in which there
is no explicit conjunction operator� but certain contexts require an identi�er or phrase to
have all types belonging to some �nite set� rather than a single type�

Corresponding to each data type �� there are two phrase types� � exp�ression�� describing
phrases that can be evaluated to obtain a value of data type �� and � acc�eptor�� describing
phrases whose execution can accept a value of data type �� �What is usually called a �
variable is a phrase having both of the types � exp and � acc�� There is one additional
primitive phrase type� comm�and��

If an object possesses a �eld of type � that is named by an identi�er �� then the object
has the type �� �� Notice that no type describes more than one �eld� instead an object with
several �elds has several types� each describing a single �eld�

If �� is a �nite set of types and � is a type� then �� ��� � is a type describing a procedure

whose call will have type � when its parameter has all of the types in ��� Moreover� if such
a procedure causes no assignment to a global variable� it will also have the type �� ���

P
� and

be said to be a passive procedure�

We will partition the set of phrase types into passive and active types� First� however� we
note that� without loss of generality� we can require a procedure whose calls are passive to
itself be passive and to have a passive parameter� Putting the matter the other way round�
we require that in �� ��� �� � must be active �i�e� not passive�� and in �� ���

P
�� � must be

active if any member of �� is active�

�

Henceforth� we will use the following metavariables�

�� data types

�� passive phrase types

�� active phrase types

�� arbitrary phrase types
��� �nite sets of passive phrase types
��� �nite sets of arbitrary phrase types

�� identi�ers �

�For brevity� we will call a �nite set of phrase types passive when its members are all passive��
Then the sets of passive and active phrase types may be de�ned grammatically�

� ��� � exp j �� ���
P

� j �� ���
P

� j ���

� ��� � acc j comm j �� ��� � j ���

� ��� � j �

The subtype preorder is de�ned for phrase types and for �nite sets of phrase types by
mutual recursion� For phrase types�

� exp � �� exp when � �data �
�

� acc � �� acc when �� �data �

comm� comm

�� ���
P

� � ��� ���
P

��

�� ���
P

� � ��� ��� ��

�� ��� � � ��� ��� ��

����
���
when ��� � �� and � � ��

�� � � �� �� when � � �� �

and in any other case � � �� is false� For �nite sets of phrase types�

�� � ��� when ���� � ������� � ��� � � �� �

�Note that ��� � �� implies �� � ����� This de�nition of subtype implies

Proposition � If � is passive and � � � then � is passive�

Proposition � If �� is a passive subset of ��� and ��� � ��� then there exists a passive subset
��� of ��� such that ��� � ���

��

��

���

���

�

�

�

�

�

Proof � Take ��� to be the set of passive members of ���� �End of Proof �

Now suppose two phrases p� and p� occur in some context� such as p� k p�� that prohibits
their interference� Then if some identi�er is used actively in either one of p� or p�� it must not
be used at all in the other �though it may occur in a vacuous context such as an argument to
a constant procedure� or an object �eld that is never selected�� To formalize this constraint�
let ��� and ��� be the sets of types with which the identi�er is used in p� and p� respectively�
Then we require that ��� � ��� hold� where � is de�ned to be the symmetric relation on �nite
sets of phrase types such that

��� � ��� if and only if ��� � fg or ��� � fg or ��� 	 ��� is passive �

When ��� � ��� we say that ��� and ��� are independent� This relation satis�es�

Proposition � If ��� � ��� and ���
�
� ��� then ���

�
� ����

Proposition � If ��� � ��� and ���
�
� ��� then ���� 	 ����� � ����

Proposition � If ��� and ��� are subsets of �� such that ��� � ���� and ��� � ��� then there exist
subsets ���

�
and ���

�
of ��� such that ���

�
� ���

�
� ���

�
� ���� and ���� �

����

��

��� ���

���

���
�

���
�

�
�
�
�
�
�
�

�

A
A
A
A
A
A
A

�

�

����������������

�

��

��

��

�

AA

AA

AA

�

�

��
��

��
��

��
��

��

�

��
��

��
��

��
��

��

�

Proof � If ��� is empty� take ���� to be empty and
���
�
to be ���� If ��� is empty� take ���� to be

empty and ���
�
to be ���� If ��� and ��� are passive� take �� to be ��� 	 ���� use Proposition �� and

then take both ���
�
and ���

�
to be ���� �End of Proof �

Next we extend the operation �t from data types to phrase types� �Eventually� we will
need this operation to typecheck conditional constructs�� Speci�cally� we de�ne �t to map
pairs of types into �nite sets of types as follows�

�� exp �t �� exp � f � exp j � � �� �t �� g

�� acc �t �� acc � f � acc j � � �� �u �� g

	

comm �t comm� fcommg

���� ���P ��� �t ���� ���P ��� � f ���� 	 ���� ���P � j � � �� �t �� g

���� ���P ��� �t ���� ��� ���

���� ��� ��� �t ���� ���P ���

���� ��� ��� �t ���� ��� ���

����
���
� f ���� 	 ���� ��� � j � � �� �t �� g

�� �� �t �� �� � f �� � j � � �� �t �� g �

and in any other case �� �t �� � fg� Then

Proposition � �� �t �� is a �nite complete set of upper bounds of �� and ��� i�e�

�a� If � � �� �t �� then �� � � and �� � ��

�b� If �� � � and �� � � then there is a �� � �� �t �� such that �� � ��

Proof � Each half of the proposition is proved separately by induction on the structure of
�� �End of Proof �

�Using Propositions � and �a� the reader may verify that the members of �� �t �� never
violate the requirement that� when a procedural type has a passive result type� both the
procedural type and its argument type must be passive��

Moreover� we can de�ne the operation t� mapping pairs of �nite sets of types into �nite
sets of types� such that

��� t ��� �
�
f �� �t �� j �� � ��� and �� � ��� g �

Then

Proposition � ��� t ��� is a least upper bound of ��� and ����

Now we de�ne a type assignment to be a function from the set of identi�ers to the set
of �nite sets of phrase types that maps all but a �nite number of identi�ers into the empty
set� We say that a type assignment is passive when it maps every identi�er into a passive
set� and we use the following metavariables for type assignments�

�� passive type assignments

�� arbitrary type assignments �

We write � � for the type assignment that maps every identi�er into the empty set� and
�� j �� �� � for the type assignment such that �� j �� �� �� � �� and �� j �� �� ��� � ��� when ��
� ��
We also write � ��� ��� j � � � j �n� ��n � to abbreviate � � � � � � � j ��� ��� � � � � j �n� ��n ��

We de�ne the relations �� �� �� and the operation 	 on type assignments by pointwise
extension�

� � �� def
� ���� �� � ���

�

� � �� def
� ���� �� � ���

� � �� def
� ���� �� � ���

�� 	 ����
def
� �� 	��� �

As a consequence� Propositions � to 	 can be extended from �nite sets of types to type
assignments�

Proposition � If � is a passive subset �in the pointwise�extended sense� of �� and �� � ��
then there exists a passive subset �� of �� such that �� � ��

Proposition 	 If �� � �� and ��

�
� �� then ��

�
� ���

Proposition �
 If �� � �� and ��

�
� �� then ��� 	 ��

�
� � ���

Proposition �� If �� and �� are subsets of � such that �� � ��� and �� � �� then there
exist subsets ��

�
and ��

�
of �� such that ��

�
� ��

�
� ��

�
� ��� and ��

�
� ���

�� Typings and their Inference Rules

If � is a type assignment� p is a phrase� and � is a type� then the formula � � p � �� called a
typing� asserts that the phrase p has the type � when its free identi�ers are assigned types by
�� When �� is a �nite set of types� we write � � p � �� to abbreviate the �nite set of typings

f� � p � � j � � �� g �

The valid typings of our illustrative language are those that are provable from the following
rules of inference�

� Identi�ers

� � � � � when � � ��

� Subtypes
� � p � �

� � p � ��
when � � ��

� Abstraction

�� j �� �� � � p � �

� � ���� ���� p� � �� ���P �

when �� � ���� � � �� � is passive�

and if � is passive then �� is passive

�� j �� �� � � p � �

� � ���� ���� p� � �� ��� �
when �� � ���

�

� Application

�� � p� � �� ���P �

�� � p� � ��

� � p� p� � �

when �� � �� �� � �� �� � ��

and if � is passive then �� is passive

�� � p� � �� ��� �

�� � p� � ��

� � p� p� � �

when �� � �� �� � �� and �� � ��

� Tupling
� � pk � �

� � h�� � p�� � � � � �k � pk� � � � � �n � pni � ��k� ��

� Field Selection
� � p � ��� ��

� � p�� � �

� Conditionals
� � p� � bool exp
� � p� � �
� � p� � �

� � if p� then p� elsep� � �

� Arithmetic Expressions

� � � � int exp � � ��	 � real exp

� � p� � int exp
� � p� � int exp

� � p� � p� � int exp

� � p� � real exp
� � p� � real exp

� � p� � p� � real exp

� Commands
� � p� � � acc
� � p� � � exp

� � p� �� p� � comm

� � p� � comm

� � p� � comm

� � p� � p� � comm

� � p� � bool exp
� � p� � comm

� � while p� do p� � comm

� Concurrency

�� � p� � comm

�� � p� � comm

� � p� k p� � comm

when �� � �� �� � �� and �� � ��

�

In the rules for an application p�p�� notice that the requirement �� � �� prohibits
interference between p� and p� �just as with the concurrent construction p� k p��� so that a
procedure must not interfere with its argument� This is the basic mechanism that insures
that reduction preserves syntactic correctness�

In the rules for abstraction� the condition �� � ��� �where ��� is the �nite set of types
occurring explicitly in the lambda expression� restricts the procedural type that can be
inferred� this restriction is introduced to make typechecking feasible�

In what follows� we will prove several propositions by induction on the size of a proof�
using the above rules� of a typing� with a case analysis over the di
erent inference rules that
may occur at the root of the proof tree� Fortunately� most of the inference rules fall into one
of two classes that can be treated uniformly in such a case analysis�

� An inference rule is called a normal rule if it is equivalent to a �possibly in�nite� set
of rules of the form

� � p� � ���
���

� � pn � ��n

� � ��p�� � � � � pn� � �

where �� p�� � � � � pn are metavariables� ��p�� � � � � pn� is a phrase constructed from
p�� � � � � pn without using binding operations� ���� � � � � ��n are �nite sets of types not
containing metavariables� � is a type not containing metavariables� and if � is passive
then ���� � � � � ��n are passive�

�

� An inference rule is called a noninterference rule if it is equivalent to a �possibly
in�nite� set of rules of the form

�� � p� � ���
�� � p� � ���

� � ��p�� p�� � �

when �� � �� �� � �� and �� � ��

where ��� ��� �� p�� and p� are metavariables� ��p�� p�� is a phrase constructed from
p� and p� without using binding operations� ��� and ��� are �nite sets of types not
containing metavariables� � is a type not containing metavariables� and if � is passive
then ��� and ��� are passive�

For example� when k and n are integers such that � � k � n� � is a type� and ��� � � � � �n
are identi�ers� let Rnk��� ����n

be the rule

� � pk � f�g

� � h�� � p�� � � � � �k � pk� � � � � �n � pni � ��k� ��

Then the inference rule for object construction is equivalent to the set of rules

fRnk��� ����n
j � � k � n and � is a type and ��� � � � � �n are identi�ersg �

and is therefore a normal rule�

On the other hand� when �� is a �nite set of types and � is an active type� let R���
be the

rule
�� � p� � f�� ��� �g

�� � p� � ��

� � p� p� � �

when �� � �� �� � �� and �� � ��

Then the second inference rule for application is equivalent to the set of rules

fR���
j �� is a �nite set of types and � is a type g �

and is therefore a noninterference rule�

The reader may verify that� except for the rule for identi�ers and the two rules for
abstraction� every inference rule is either a normal rule or a noninterference rule�

Proposition �� If �� � � and � � p � � then �� � p � ��

Proof � By induction on the proof size of � � p � ��

��� If the proof root is the rule for identi�ers� then p is an identi�er � and � � ��� Since
��� � ��� there is a �� � ��� such that �� � �� Then the identi�er rule gives �� � � � �� and
the subtype rule gives �� � � � ��

��

��� If the proof root is a normal rule� then p must have the form ��p�� � � � � pn�� and the
premisses of the rule must have the forms � � p� � ���� � � � � � � pn � ��n� By the induction
hypothesis �applied to each member of each ��i�� �� � p� � ���� � � � � �� � pn � ��n� and by the
rule used at the root� �� � ��p�� � � � � pn� � ��

��� If the proof root is a noninterference rule� then p must have the form ��p�� p�� and
the premisses of the rule must have the forms �� � p� � ��� and �� � p� � ���� where �� and
�� are subsets of � such that �� � ��� By Proposition ��� there are subsets ��

�
and ��

�
of

�� such that ��

�
� ��

�
� ��

�
� ��� and ��

�
� ��� By the induction hypothesis� ��

�
� p� � ���

and ��

�
� p� � ���� and by the rule used at the root� �� � ��p�� p�� � ��

��� If the proof root is the �rst rule for abstraction� then its premiss has the form �� j
�� �� � � � � � � where � is a passive subset of �� By Proposition �� there is a passive subset
�� of �� such that �� � �� Then ��� j �� �� � � � � j �� �� �� and thus the induction hypothesis
allows us to replace � � j �� �� � by ��� j �� �� �� and the rule at the root allows us to replace �
by ���

The more straightforward case where the proof root is the second rule for abstraction is
left to the reader� �End of Proof �

Proposition �� �a� If � is passive and � � p � � then there exists a passive � � � such
that � � p � ��

�b� If �� is passive and � � p � �� then there exists a passive � � � such that � � p � ���

Proof � By induction on the proof size of � � p � � or � � p � ��� Within the induction step�
we prove �a� by case analysis of the proof root and then show that �b� follows from �a��

�a�� If the proof root is the rule for identi�ers� then p is an identi�er � and � � ��� so
that one can take � to be � �� f�g ��

�a�� If the proof root is a normal rule� then p must have the form ��p�� � � � � pn� and
the premisses of the rule must have the forms � � p� � ���� � � � � � � pn � ��n� where the
��i�s are passive� By the induction hypothesis there are passive ��� � � � � �n � � such that
�� � p� � ���� � � � � �n � pn � ��n� Let � be �� 	 � � � 	 �n� which is a passive subset of ��
Then� since �i � � implies � � �i� Proposition �� gives � � p� � ���� � � � � � � pn � ��n� and
the rule used at the root gives � � ��p�� � � � � pn� � ��

�a�� If the proof root is a noninterference rule� then p must have the form ��p�� p�� and
the premisses of the rule must have the forms �� � p� � ��� and �� � p� � ���� where ��

and �� are subsets of � such that �� � ��� and ��� and ��� are passive� By the induction
hypothesis there are passive �� � �� and �� � �� such that �� � p� � ��� and �� � p� � ����
Let � be �� 	 ��� which is a passive subset of �� Then �� and �� are subsets of � that�
since they are passive� satisfy �� � ��� Thus the rule used at the root gives � � ��p�� p�� � ��

�a�� If the proof root is the �rst rule for abstraction� then its premiss has the form

��

� � j �� �� � � � � � � where � � � is passive� Then� since � is a subset of itself� we can replace
� by � in the consequence of the rule�

The proof root cannot be the second rule for abstraction� since the consequence of this
rule never has the form � � p � � for passive ��

�b� If � � p � ��� then � � p � �i for each of the �nitely many �i �
��� From �a�� for each

�i there is a passive �i � � such that �i � p � �i� Let � be the union of these �i� which is
a passive subset of �� Then� since �i � � implies � � �i� Proposition �� gives � � p � �i

for each �i� and thus � � p � ��� �End of Proof �

Proposition �� If ��� and ��� are subsets of �� such that ��� � ���� and � � p � ��� then there
exist subsets �� and �� of � such that such that �� � ��� �� � p � ���� and �� � p � ����

��

��� ���

�

�� ��

�
�
�
�
�
�
�

�

A
A
A
A
A
A
A

�

�

����������������

� p�

��

��

��

�

AA

AA

AA

�

�

��
��

��
��

��
��

��

� p�

��
��

��
��

��
��

��

� p�

Proof � If ��� is empty� take �� to be empty and �� to be �� If ��� is empty� take �� to be
empty and �� to be �� If ��� and ��� are passive� take �� to be ��� 	 ���� use Proposition ��b�
and then take both �� and �� to be �� �End of Proof �

With these preliminaries� we can prove the basic relationship between typings and substi�
tutions� We write �p�	� � p�� to denote the result of substituting p� for the free occurrences
of � in p�� with renaming to avoid identi�er collisions�

Proposition �� If � �� j �� �� � � p� � �� �� � p� � ��� and �� and �� are subsets of � such
that �� � ��� then � � �p�	� � p�� � ��

Proof � By induction on the proof size of ��� j �� �� � � p� � ��

��� If the proof root is the rule for identi�ers� then p� is an identi�er �� and � � � �� j �� �� ����
If �� � � then � � �� and �p�	� � p�� � p�� so that �� � p� � �� gives �� � �p�	� � p�� � � and�
since �� � � implies � � ��� Proposition �� gives � � �p�	� � p�� � �� On the other hand�
if ��
� � then � � ���

� and �p�	� � p�� � ��� so that �� � �p�	� � p�� � � and� since �� � �
implies � � ��� Proposition �� gives � � �p�	� � p�� � ��

��

��� If the proof root is a normal rule� then p� must have the form ��p��� � � � � p�n�� which
is constructed from p��� � � � � p�n without using binding operators� and the premisses of the
rule must have the form

��� j �� �� � � p�� � ��� � � � � �� j �� �� � � p�n � ��n �

By the induction hypothesis �applied to each member of each ��i��

� � �p��	� � p�� � ��� � � � � � �p�n	� � p�� � ��n �

and by the rule at the root�

� � ���p��	� � p��� � � � � �p�n	� � p��� � � �

But since � is constructed without binding operators�

���p��	� � p��� � � � � �p�n	� � p��� � ���p��� � � � � p�n�	� � p�� � �p�	� � p�� �

��� If the proof root is a noninterference rule� then p� must have the form ��p��� p����
which is constructed from p�� and p�� without using binding operators� and the premisses of
the rule must have the forms

���� j �� ��� � � p�� � ��
�

�
and ���� j �� ��� � � p�� � ��

�

�
�

where
��� � �� ��� � �� ��� � ���

��� � �� ��� � �� ��� � ��� �

Then� since �� � p� � ��� Proposition �� shows that there are ��� and ��� such that

��� � �� ��� � �� ��� � ���

��� � p� � ��� ��� � p� � ��� �

Since �� � ��� Proposition � gives

��� � ��� ��� � ��� ��� � ��� ��� � ��� �

Then the induction hypothesis �applied to each member of ���
�
and ���

�
� gives

��� 	��� � �p��	� � p�� � ��
�

�
��� 	 ��� � �p��	� � p�� � ��

�

�
�

By Proposition ��� ���� 	���� � ���� 	����� Thus the rule used at the root gives

� � �
�
�p��	� � p��� �p��	� � p��

�
� � �

or� since � is constructed without binding operators�

� � �p�	� � p�� � � �

��

��� If the proof root is the �rst abstraction rule� then its instance must have the form

� � �� j �� �� � j ��� ��� � � p�
�
� ��

��� j �� �� � � ����� ���� p��� � ��
� ���

P
��

where ��� � ���� �� � �� is passive� and �� � �� is passive� Moreover� since renaming obviously
preserves typings� we can assume without loss of generality that �� is distinct from � and does
not occur free in p�� and thus that �� maps �

� into the empty set�

Since �� is a passive subset of �� and �� � p� � ��� by Proposition ��b there is a passive
�� � �� such that �� � p� � ��� Since ��
� �� the premiss of the abstraction rule instance can
be rewritten as

� � �� j �
�� ��� � j �� �� � � p�

�
� �� �

and since ���
� is empty and �� and �� are passive�

��� j �
�� ��� � � �� and ��� j �

�� ��� � 	 �� � ��� 	 �� j �
�� ��� � �

Thus the induction hypothesis gives

� �� 	 �� j �
�� ��� � � �p�

�
	� � p�� � �

� �

and� since �� 	 �� is a passive subset of �� the �rst abstraction rule gives

� �
�
���� ���� �p

�

�
	� � p��

�
� ��� ���

P
�� �

Finally� since �� is distinct from � and does not occur free in p��

������ ���� p
�

�
�	� � p�� � ���� ���� �p

�

�
	� � p�� �

The simpler case of the second abstraction rule is left to the reader� �End of Proof �

Notice� however� that the converse of Proposition �	 does not hold� For example� suppose

p� is �x�a��x�b�

p� is ha � y� b � zi

� is x

� is � y� ffcommg ��� commg j z�fcommg �

� is comm

Then � � �p�	� � p�� � � is

� y� ffcommg ��� commg j z� fcommg � � �ha � y� b � zi�a��ha � y� b � zi�b� � comm �

which is a valid typing� However� there are no ����� � � and �� such that

��� j x� �� � � �x�a��x�b� � comm

��

�� � ha � y� b � zi � �� �

since the second typing requires every member of �� to be either b�comm or a� ��� ��� comm

where comm �
���� which makes the �rst typing impossible�

From Proposition �	� the reader may verify that beta reduction preserves typings�

Proposition �� If � � ���� ���� p��p� � � then � � �p�	� � p�� � ��

The reader may also verify that the reduction of tuples� and its inverse� preserves typings�

Proposition �� � � h�� � p�� � � � � �k � pk� � � � � �n � pni��k � � i� � � pk � ��

�� Typechecking

To show that the typings de�ned in the previous section can be checked� we de�ne a com�

putable typechecking function � which accepts a type assignment and a phrase� Essentially

 ���� p� produces a �nite set �� of types such that �� � p � � holds if and only if there is

a member of �� that is a subtype of �� However� ���� p� also produces additional informa�

tion� the � � �� are paired with type assignments � � �� that are just su
cient to give

� � p � �� Thus ���� p� is a set of pairs� each consisting of a type assignment and a type�

This function is de�ned by induction on the structure of phrases�

 ���� �� �
n
h� �� f�g �� �i

��� � � ���
o

 ���� ��� ���� p� �n
h�� �� ���

P
�i
��� h� � j �� �� �� �i � ���� j �� ��� �� p� and �� � fg and � passive

o
	n

h�� �� ��� �i
��� h� � j �� �� �� �i � ���� j �� ��� �� p� and �� � fg and � not passive

o

 ���� p�p�� �
n
h�� 	��� �i

��� �� � �� and

�����
��
h��� �� ���P �i � ���� p�� or h��� �� ��� �i � ���� p��

�
and

��
 � ��
 ���� p���
�
�� �

�

�����

�
���� and ���
�
� ��� �
���� � ��

�� o

 ���� h�� � p�� � � � � �n � pni� �
n�

k��

n
h�� �k� �i

��� h�� �i � ���� pk�
o

 ���� p��� �
n
h�� �i

��� h�� �� �i � ���� p�
o

 ���� if p� then p� else p�� �n
h�� 	�� 	��� �i

��� ����� ��� ��� �� � bool exp and � � �� �t �� and

h��� ��i � ���� p�� and h��� ��i � ���� p�� and h��� ��i � ���� p��
o

�	

 ���� �� �
n
h� �� int expi

o

 ���� ��	� �
n
h� �� real expi

o

 ���� p� � p�� �n
h�� 	��� int expi

��� ����� ��� �� � int exp and �� � int exp and

h��� ��i � ���� p�� and h��� ��i � ���� p��
o
	n

h�� 	��� real expi
��� ����� ��� �� � real exp and �� � real exp and

h��� ��i � ���� p�� and h��� ��i � ���� p��
o

 ���� p� �� p�� �n
h�� 	��� commi

��� ����� ��� �� �� � � acc and �� � � exp and

h��� ��i � ���� p�� and h��� ��i � ���� p��
o

 ���� p� � p�� �n
h�� 	��� commi

��� ����� ��� �� � comm and �� � comm and

h��� ��i � ���� p�� and h��� ��i � ���� p��
o

 ����while p� do p�� �n
h�� 	��� commi

��� ����� ��� �� � bool exp and �� � comm and

h��� ��i � ���� p�� and h��� ��i � ���� p��
o

 ���� p� k p�� �n
h�� 	��� commi

��� �� � �� and ����� ��� �� � comm and �� � comm and

h��� ��i � ���� p�� and h��� ��i � ���� p��
o

In the equation for ���� p�p��� the expression ��
 ���� p�� denotes the �nite set of all
functions from �� to ���� p��� and �
�

��� and �
�
��� denote the �rst and second components

of the pair
���

This typechecking function meets the following speci�cation�

Proposition �� �a� If h�� �i � ���� p� then � � �� and � � p � � and if � is passive then
� is passive�

�b� If � � �� and � � p � � then ��h��� ��i � ���� p�� �� � � and �� � ��

��

Proof � �a� By induction on the structure of p� We give the details of the case where p is an
application p�p�� and leave the tedium of the remaining cases to the reader�

Suppose h�� �i � ���� p�p��� By the de�nition of � there are ��� ��� and �� such that
� � �� 	��� �� � ��� and either h��� �� ���P �i or h��� �� ��� �i belongs to ���� p��� Also�

there is a function
 from �� to ���� p�� such that

�� �
�

�����

�
���� and ���� �
��� �
���� � �� �

For each �� � ��� since
�� � ���� p��� the induction hypothesis for p� gives �
���� � �� and
�
���� � p� � �
���� and if �
���� is passive then �
���� is passive� Then� since �
���� � ��� we
have �
���� � p� � �� and� by Proposition �� if �� is passive then �
���� is passive� Thus� since
�� is the union of �
���� over �� � ��� we have �� � �� and �� � p� � �� and if �� is passive then
�� is passive�

By the induction hypothesis for p�� we have �� � �� and either �� � p� � �� ���P � and ��

is passive �since �� ���
P

� is passive� or �� � p� � �� ��� �� Thus � � �� 	�� � �� and� by the
inference rules for application� � � p�p� � �� Moreover� if � is passive then our restrictions
on procedural types prohibit the type �� ��� � and insure that �� is passive� so that �� and
��� and thus �� are passive�

�b� By induction on the proof size of � � p � �� We give the details of the case where the
proof root is an application rule� and leave the remaining cases to the reader�

Suppose � � �� and the root of the proof of � � p � � is one of the inference rules for
application� Then p � p�p�� either �� � p� � �� ���P � or �� � p� � �� ��� �� and �� � p� � ���
where �� and �� are subsets of � such that �� � ��� By the induction hypothesis for
p� and the de�nition of � for procedural types� there are ��

�
� ���� and �� such that either

h��

�
� ��� ���

P
��i or h��

�
� ��� ��� ��i belong to ���� p��� ��

�
� ��� �� � ���� and �� � ��

Since �� � ���� for any ��� � ��� there will be a !� � �� such that !� � ��� and� since �� � p� � ���
�� � p� � !�� Then by the induction hypothesis for p� there is a h !��� !��i � ���� p�� such that
!�� � �� and !�� � !�� Let
 be a function mapping each ��� �

��� into such a pair h!��� !��i� Then

 is a function from ��� to ���� p�� such that �
����� � �� and �
����� � ��� hold for all ��� � ����
Let ��

�
�
S
�������

�
������ so that ��

�
� ���

Since ��

�
� ��� ��

�
� ��� and �� � ��� we have ��

�
� ��

�
by Proposition �� This

completes the conditions needed to show that� by the de�nition of �

h��

�
	��

�
� ��i � ���� p�p��

and also ��

�
	 ��

�
� � and �� � �� �End of Proof �

��

To illustrate type checking� we consider a example that is similar to one of the problematic
examples at the end of ���� Suppose �n� fint expg � � ��� Then

h�n� fint expg �� int expi � ���� n�

h�n� fint expg �� int expi � ���� n� ��

h�n� fint expg �� a� int expi � ���� ha � n� �� b � � � �i�

h�n� fint expg �� int expi � ���� ha � n� �� b � � � �i�a� �

where � � � can be any phrase� even one that has no typing� Moreover� if we abstract on any
identi�er other than n� we get

h�n� fint expg �� fg ���
P
int expi � ���� �c� � � � � ha � n� �� b � � � �i�a�

h� n� fint expg �� int expi � ���� ��c� � � � � ha � n� �� b � � � �i�a��� � ��� �

Thus each term of the reduction sequence

��c� � � � � ha � n� �� b � � � �i�a��� � �� �
 ha � n� �� b � � � �i�a �
 n� �

takes on the type int exp under any type assignment containing �n� fint expg ��

�� The Remaining Problems

Beyond the progress reported here� much remains to be done�

� The e
ciency of the typechecking algorithm needs to be understood and� if possible�
improved�

� There is need for an alternative form of procedure that can interfere with its argument�
Such a construct seems to be necessary to de�ne active procedures recursively �as can
be seen by considering the right side of the �xed�point equation Y f � f�Y f � when f
is active�� Another motivation is the desire to regard assignment as a procedure call
�as in ����� so that x �� x�� becomes an abbreviation for x�x���� We speculate that
such procedures might be obtained by abstracting on quali�ed identi�ers �e�g� on x�a
rather than simply x��

� A substantial generalization is needed to deal with goto�s� escapes� or other operations
that require continuation semantics�

� A semantic model is needed that will make it evident that distinct identi�ers possess
noninterfering meanings�

��

Despite these problems� however� the present work illustrates the utility of conjunctive types�
It seems possible that their application to the syntactic control of interference may generalize
to the syntactic treatment of a variety of program properties�

Acknowledgements The author wishes to thank Bob Tennent and Steve Brookes for their
encouragement� and Mary and Edward Reynolds for their patience�

References

��� Brinch Hansen� P� Structured Multiprogramming� Communications of the ACM� vol�
�	 ������� pp� 	��"	���

��� Coppo� M�� Dezani�Ciancaglini� M�� and Venneri� B� Functional Characters of Solvable
Terms� Zeitschrift f�ur Mathematische Logik und Grundlagen der Mathematik�
vol� �� ������� pp� �	"	��

��� Hoare� C� A� R� Monitors� An Operating System Structuring Concept� Communica�

tions of the ACM� vol� �� ������� pp� 	��"		�� Corrigendum in ��� 	
� February 	��
�
p� �
�

��� Hoare� C� A� R� Towards a Theory of Parallel Programming� in� Operating Sys�

tems Techniques� Proceedings of a Seminar� Queen�s University� Belfast� August ��"
September �� ����� edited by C� A� R� Hoare and R� H� Perrott� A�P�I�C� Studies in
Data Processing� vol� �� Academic Press� London� ����� pp� ��"���

�	� Reynolds� J� C� The Essence of Algol� in� Algorithmic Languages� Proceedings of the
International Symposium on Algorithmic Languages� Amsterdam� October ��"��� edited
by J� W� de Bakker and J� C� van Vliet� North�Holland� Amsterdam� ����� pp� ��	"����

��� Reynolds� J� C� Preliminary Design of the Programming Language Forsythe� Report�
no� CMU"CS"��"�	�� Carnegie Mellon University� Computer Science Department� June
��� �����

��� Reynolds� J� C� Syntactic Control of Interference� in� Conference Record of the

Fifth Annual ACM Symposium on Principles of Programming Languages�
Tucson� Arizona� January ��"�	� ����� pp� ��"���

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

