
June 23, 2003 ©2000-2003 Howard Huang 1

Basic circuit design and multiplexers

In the first three lectures we learned all the
fundamentals needed for making circuits.
— Truth tables and Boolean expressions

describe functions.
— Expressions can be converted to circuits.
— Boolean algebra and K-maps help simplify

expressions and circuits.
Today we’ll apply all of these foundations to
work with some larger circuits.
We’ll also begin introducing common circuits
that we’ll be using throughout the summer.

June 23, 2003 Basic circuit design and multiplexers 2

Designing circuits

The goal in circuit design is to build hardware that solves some problem.
The basic approach is to express the solution as a Boolean function, which
can then be converted to a circuit.

1. Figure out how many inputs and outputs you need.
2. Describe the function as a truth table or a Boolean expression.
3. Find a simplified Boolean expression for the function.
4. Build the circuit based on your simplified expression.

June 23, 2003 Basic circuit design and multiplexers 3

Example: comparing 2-bit numbers

Let’s design a circuit that compares two 2-bit numbers, A and B. There
are three possible results: A > B, A = B or A < B.
We will represent the results using three separate outputs.
— G (“Greater”) should be 1 only when A > B.
— E (“Equal”) should be 1 only when A = B.
— L (“Lesser”) should be 1 only when A < B.

Make sure you understand the problem!
— Inputs A and B will be 00, 01, 10, or 11 (0, 1, 2 or 3 in decimal).
— For any inputs A and B, exactly one of the three outputs will be 1.

June 23, 2003 Basic circuit design and multiplexers 4

Step 1: How many inputs and outputs?

How many inputs and outputs will this circuit have?
— Two 2-bit numbers means a total of four inputs. Let’s say the first

number consists of bits called A1 and A0 (from left to right), while
second number has bits B1 and B0.

— The problem specifies three outputs: G, E and L.
Here is a block diagram that shows the inputs and outputs explicitly.

This is like a function header or prototype in programs, which lists the
inputs and outputs of a function.
Now the hard part is to design the circuitry that goes inside the box.

June 23, 2003 Basic circuit design and multiplexers 5

Step 2: Functional specification

For this problem, it’s probably easiest
to start with a truth table. This way we
can explicitly show the relationship (>,
=, <) between the inputs.
A four-input function has a sixteen-row
truth table. For convenience, the rows
are in binary numeric order from 0000
to 1111 for A1, A0, B1 and B0.
For example, 01 < 10, so the sixth row
of the truth table (corresponding to
inputs A=01 and B=10) shows that
output L=1, while G and E are both 0.

0101111
0010111
0011011
0010011
1001101
0100101
0011001
0010001
1001110
1000110
0101010
0010010
1001100
1000100
1001000
0100000
LEGB0B1A0A1

June 23, 2003 Basic circuit design and multiplexers 6

Step 3: Simplified Boolean expressions

Let’s use K-maps to simplify our circuit. There are three functions (each
with the same inputs A1 A0 B1 B0), so we need three K-maps.

B0

0011

1011
A1

A0
0001

0000

B1

B0

0100

0000
A1

A0
1100

1110

B1

B0

1000

0100
A1

A0
0010

0001

B1

G(A1,A0,B1,B0) =
A1 A0 B0’ +
A0 B1’B0’ +
A1 B1’

E(A1,A0,B1,B0) =
A1’A0’B1’B0’ +
A1’A0 B1’B0 +
A1 A0 B1 B0 +
A1 A0’B1 B0’

L(A1,A0,B1,B0) =
A1’A0’B0 +
A0’B1 B0 +
A1’B1

June 23, 2003 Basic circuit design and multiplexers 7

Step 4: Drawing the circuits

G = A1 A0 B0’ + A0 B1’B0’ + A1 B1’
E = A1’A0’B1’B0’ + A1’A0 B1’B0 + A1 A0 B1 B0 + A1 A0’B1 B0’
L = A1’A0’B0 + A0’B1 B0 + A1’B1

LogicWorks has gates
with inverted inputs

(the small bubbles) for
clearer diagrams.

June 23, 2003 Basic circuit design and multiplexers 8

Testing this in LogicWorks

In LogicWorks, binary switches provide inputs to your circuit, and binary
probes display the outputs.

switches

probe

June 23, 2003 Basic circuit design and multiplexers 9

Circuit design issues

We had to find a suitable data representation for the inputs and outputs.
— The inputs were just two-bit binary numbers.
— We used three outputs, one for each possibility of the numbers being

greater than, equal to, or less than each other. This is called a “one
out of three” code.

K-maps have advantages but also limitations.
— Our circuits are relatively simple two-level implementations.
— But E(A1,A0,B1,B0) couldn’t be simplified at all via K-maps. Could we

do better using Boolean algebra?
Our circuit isn’t very extensible.
— We used a brute-force approach, listing all inputs and outputs. This

makes it hard to extend our circuit to compare larger numbers.
— We’ll have a better solution after we talk about computer arithmetic.

There are always many possible ways to design a circuit!

June 23, 2003 Basic circuit design and multiplexers 10

Multiplexers

Let’s think about building another circuit, a multiplexer.
In the old days, several machines could share an I/O device with a switch.

The switch allows one computer’s output to go to the printer’s input.

June 23, 2003 Basic circuit design and multiplexers 11

A 2-to-1 multiplexer

Here is the circuit analog of that printer switch.

This is a 2-to-1 multiplexer, or mux.
— There are two data inputs D0 and D1, and a select input called S.
— There is one output named Q.

The multiplexer routes one of its data inputs (D0 or D1) to the output Q,
based on the value of S.
— If S=0, the output will be D0.
— If S=1, the output will be D1.

June 23, 2003 Basic circuit design and multiplexers 12

Building a multiplexer

Here is a truth table for the multiplexer, based on
our description from the previous page:

The multiplexer routes one of its data
inputs (D0 or D1) to the output Q, based
on the value of S.
— If S=0, the output will be D0.
— If S=1, the output will be D1.

You can then find an MSP for the mux output Q.

Q = S’D0 + S D1

Note that this corresponds closely to our English
specification above—sometimes you can derive an
expression without first making a truth table.

1111
1011
0101
0001

1110
0010
1100
0000

QD0D1S

June 23, 2003 Basic circuit design and multiplexers 13

Multiplexer circuit diagram

Here is an implementation of a 2-to-1 multiplexer.

Remember that a minimal sum of products expression leads to a minimal
two-level circuit.

Q = S’D0 + S D1

June 23, 2003 Basic circuit design and multiplexers 14

Blocks, abstraction and modularity

Multiplexers are common enough that we often want to treat them as
abstract units or black boxes, as symbolized by our block diagrams.
— Block symbols make circuit diagrams simpler, by hiding the internal

implementation details. You can use a device without knowing how
it’s designed, as long as you know what it does.

— Different multiplexer implementations should be interchangeable.
— Circuit blocks also aid hardware re-use, since you don’t have to keep

building a multiplexer from scratch every time you need one.
These blocks are similar to functions in programming languages!

June 23, 2003 Basic circuit design and multiplexers 15

Enable inputs

Many devices have an additional enable input,
which “activates” or “deactivates” the device.
We could design a 2-to-1 multiplexer with an
enable input that’s used as follows.
— EN=0 disables the multiplexer, which forces

the output to be 0. (It does not turn off the
multiplexer.)

— EN=1 enables the multiplexer, and it works
as specified earlier.

Enable inputs are especially useful in combining
smaller muxes together to make larger ones, as
we’ll see later today.

11111
10111
01011
00011
11101
00101
11001
00001

01110
00110
01010
00010
01100
00100
01000
00000

QD0D1SEN

June 23, 2003 Basic circuit design and multiplexers 16

Truth table abbreviations

Notice that when EN=0, then Q is always 0,
regardless of what S, D1 and D0 are set to.
We can shorten the truth table by including Xs
in the input variable columns, as shown on the
bottom right.

11111
10111
01011
00011
11101
00101
11001
00001

01110
00110
01010
00010
01100
00100
01000
00000

QD0D1SEN

11111
10111
01011
00011
11101
00101
11001
00001

0xxx0

QD0D1SEN

June 23, 2003 Basic circuit design and multiplexers 17

Another abbr. 4 U

Also, when EN=1 notice that if S=0 then Q=D0, but if S=1 then Q=D1.
Another way to abbreviate a truth table is to list input variables in the
output columns, as shown on the right.

This final version of the 2-to-1 multiplexer truth table is much clearer,
and matches the equation Q = S’D0 + S D1 very closely.

11111
10111
01011
00011
11101
00101
11001
00001

0xxx0

QD0D1SEN

D111
D001

0x0

QSEN

June 23, 2003 Basic circuit design and multiplexers 18

A KVM switch

This KVM switch allows four computers to share a single keyboard, video
monitor, and mouse.

June 23, 2003 Basic circuit design and multiplexers 19

A 4-to-1 multiplexer

Here is a block diagram and abbreviated truth table for a 4-to-1 mux,
which directs one of four different inputs to the single output line.
— There are four data inputs, so we need two bits, S1 and S0, for the

mux selection input.
— LogicWorks multiplexers have active-low enable inputs, so the mux

always outputs 1 when EN’ = 1. This is denoted on the block symbol
with a bubble in front of EN.

1xx1

D3110
D2010
D1100
D0000

QS0S1EN’

Q = S1’S0’D0 + S1’S0 D1 + S1 S0’D2 + S1 S0 D3

June 23, 2003 Basic circuit design and multiplexers 20

A 4-to-1 multiplexer implementation

Again we have a minimal sum of products expression, which leads to a
minimal two-level circuit implementation.

Q = S1’S0’D0 + S1’S0 D1 + S1 S0’D2 + S1 S0 D3

June 23, 2003 Basic circuit design and multiplexers 21

2n-to-1 multiplexers

You can make even larger multiplexers, following the same pattern.
A 2n-to-1 multiplexer routes one of 2n input lines to the output line.
— There are 2n data inputs, so there must also be n select inputs.
— The output is a single bit.

Here is an 8-to-1 multiplexer, probably the biggest we’ll see in this class.

June 23, 2003 Basic circuit design and multiplexers 22

Example: addition

Multiplexers can sometimes make circuit design easier.
As an example, let’s make a circuit to add three 1-bit inputs X, Y and Z.
We’ll need two bits to represent the total.
— The bits will be called C and S, standing for “carry” and “sum.”
— These are two separate functions of the inputs X, Y and Z.

A truth table and sum of minterm equations for C and S are shown below.

1
1
1
0
1
0
0
0

C

1111
0011
0101
1001
0110
1010
1100
0000

SZYX

C(X,Y,Z) = Σm(3,5,6,7)
S(X,Y,Z) = Σm(1,2,4,7)0 + 1 + 1 = 10

1 + 1 + 1 = 11

June 23, 2003 Basic circuit design and multiplexers 23

Implementing functions with multiplexers

We could implement a function of n variables with an n-to-1 multiplexer.
— The mux select inputs correspond to the function’s input variables,

and are used to select one row of the truth table.
— Each mux data input corresponds to one output from the truth table.

We connect 1 to data input Di for each function minterm mi, and we
connect 0 to the other data inputs.

For example, here is the carry function, C(X,Y,Z) = Σm(3,5,6,7).

1111
1011
1101
0001
1110
0010
0100
0000

CZYX

June 23, 2003 Basic circuit design and multiplexers 24

Partitioning the truth table

We can actually implement C(X,Y,Z) = Σm(3,5,6,7)
with just a 4-to-1 mux, instead of an 8-to-1.
— Instead of using three variables to select one row

of the truth table, we’ll use two variables to pick
a pair of rows in the table.

— The multiplexer data inputs will be functions of
the remaining variable, which distinguish between
the rows in each pair.

First, we can divide the rows of our truth table into
pairs, as shown on the right. X and Y are constant
within each pair of rows, so C is a function of Z only.
— When XY=00, C=0
— When XY=01, C=Z
— When XY=10, C=Z
— When XY=11, C=1

1111
1011

1101
0001

1110
0010

0100
0000

CZYX

June 23, 2003 Basic circuit design and multiplexers 25

A more efficient adder

All that’s left is setting the multiplexer inputs.
— The two input variables X and Y will be connected to select inputs S1

and S0 of our 4-to-1 multiplexer.
— The expressions for C(Z) are then connected to the data inputs D0-D3

of the multiplexer.

1111
1011

1101
0001

1110
0010

0100
0000

CZYX

When XY=00, C=0

When XY=01, C=Z

When XY=10, C=Z

When XY=11, C=1

June 23, 2003 Basic circuit design and multiplexers 26

Verifying our adder

Don’t believe that this works? Start with the equation
for a 4-to-1 multiplexer from earlier in the lecture.

Q = S1’S0’D0 + S1’S0 D1 + S1 S0’D2 + S1 S0 D3

Then just plug in the actual inputs to our circuit, as
shown again on the right: S1S0 = XY, D3 = 1, D2 = Z,
D1 = Z, and D0 = 0.

C = X’Y’•0 + X’YZ + XY’Z + XY•1
= X’YZ + XY’Z + XY
= X’YZ + XY’Z + XY(Z’ + Z)
= X’YZ + XY’Z + XYZ’ + XYZ

So the multiplexer output really is the carry function,
C(X,Y,Z) = Σm(3,5,6,7).

June 23, 2003 Basic circuit design and multiplexers 27

Multiplexer-based sum

Here’s the same thing for the sum function, S(X,Y,Z) = Σm(1,2,4,7).

Again, we can show that this is a correct implementation.

Q = S1’S0’D0 + S1’S0 D1 + S1 S0’D2 + S1 S0 D3
= X’Y’Z + X’YZ’ + XY’Z’ + XYZ
= Σm(1,2,4,7)

When XY=00, S=Z

When XY=01, S=Z’

When XY=10, S=Z’

When XY=11, S=Z
1111
0011

0101
1001

0110
1010

1100
0000

SZYX

June 23, 2003 Basic circuit design and multiplexers 28

Dual multiplexers

A dual 4-to-1 mux allows you to select from one of four 2-bit data inputs.
The Mux-4×2 T.S. device in LogicWorks is shown here.
— The two output bits are 2Q 1Q, and S1-S0 select a pair of inputs.
— LogicWorks labels the x-th bit of data input y as xDy.

11xx1

0
0
0
0

EN’

1D32D311
1D22D201
1D12D110
1D02D000

1Q2QS0S1

June 23, 2003 Basic circuit design and multiplexers 29

Dual muxes in more detail

You could build a dual 4-to-1 mux from
its truth table and our familiar circuit
design techniques.
It’s also possible to combine smaller
muxes together to form larger ones.
You can build the dual 4-to-1 mux just
by using two 4-to-1 muxes.
— The two 4-to-1 multiplexers share

the same EN’, S1 and S0 signals.
— Each smaller mux produces one bit

of the two-bit output 2Q 1Q.
This kind of hierarchical design is very
common in computer architecture.

June 23, 2003 Basic circuit design and multiplexers 30

Dual multiplexer-based adder

We can use this dual 4-to-1 multiplexer to implement our adder, which
produces a two-bit output consisting of C and S.

That KVM switch from earlier is really a “tri 4-to-1 multiplexer,” since it
selects from four sets of three signals (keyboard, video and mouse).

June 23, 2003 Basic circuit design and multiplexers 31

Summary

Today we began designing circuits!
— Starting from a problem description, we came up with a truth table

to show all possible inputs and outputs.
— Then we built the circuit using primitive gates or multiplexers.
A 2n-to-1 multiplexer routes one of 2n inputs to a single output line.
— Muxes are a good example of our circuit design techniques.
— They also illustrate abstraction and modularity in hardware design.
— We saw some variations such as active-low and dual multiplexers.
Tomorrow we’ll present another commonly-used device and show how it
can also be used in larger circuits.

	Basic circuit design and multiplexers
	Designing circuits
	Example: comparing 2-bit numbers
	Step 1: How many inputs and outputs?
	Step 2: Functional specification
	Step 3: Simplified Boolean expressions
	Step 4: Drawing the circuits
	Testing this in LogicWorks
	Circuit design issues
	Multiplexers
	A 2-to-1 multiplexer
	Building a multiplexer
	Multiplexer circuit diagram
	Blocks, abstraction and modularity
	Enable inputs
	Truth table abbreviations
	Another abbr. 4 U
	A KVM switch
	A 4-to-1 multiplexer
	A 4-to-1 multiplexer implementation
	2n-to-1 multiplexers
	Example: addition
	Implementing functions with multiplexers
	Partitioning the truth table
	A more efficient adder
	Verifying our adder
	Multiplexer-based sum
	Dual multiplexers
	Dual muxes in more detail
	Dual multiplexer-based adder
	Summary

		hhuang@cs.uiuc.edu
	2003-06-24T00:19:06-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

