Basic circuit design and multiplexers

= |n the first three lectures we learned all the

fundamentals needed for making circuits. ‘~

— Truth tables and Boolean expressions
describe functions.

— Expressions can be converted to circuits.

— Boolean algebra and K-maps help simplify
expressions and circuits.

= Today we’ll apply all of these foundations to
work with some larger circuits.

= We’ll also begin introducing common circuits
that we’ll be using throughout the summer.

June 23, 2003 ©2000-2003 Howard Huang

Designing circuits

= The goal in circuit design is to build hardware that solves some problem.

= The basic approach is to express the solution as a Boolean function, which
can then be converted to a circuit.

Figure out how many inputs and outputs you need.

Describe the function as a truth table or a Boolean expression.
Find a simplified Boolean expression for the function.

Build the circuit based on your simplified expression.

A LW N -

(GRYam
"

June 23, 2003 Basic circuit design and multiplexers 2

Example: comparing 2-bit numbers

= Let’s design a circuit that compares two 2-bit numbers, A and B. There
are three possible results: A> B, A=Bor A <B.

= We will represent the results using three separate outputs.
— G (“Greater”) should be 1 only when A > B.
— E ("Equal”) should be 1 only when A = B.
— L ("Lesser”) should be 1 only when A < B.
= Make sure you understand the problem!
— Inputs A and B will be 00, 01, 10, or 11 (0, 1, 2 or 3 in decimal).
— For any inputs A and B, exactly one of the three outputs will be 1.

|

]

June 23, 2003 Basic circuit design and multiplexers

Step 1: How many inputs and outputs?

= How many inputs and outputs will this circuit have?

— Two 2-bit numbers means a total of four inputs. Let’s say the first
number consists of bits called A1 and AO (from left to right), while
second number has bits B1 and BO.

— The problem specifies three outputs: G, E and L.
= Here is a block diagram that shows the inputs and outputs explicitly.

— A1
— AO

—mQ
|

— B1
— BO

= This is like a function header or prototype in programs, which lists the
inputs and outputs of a function.

= Now the hard part is to design the circuitry that goes inside the box.

June 23, 2003 Basic circuit design and multiplexers

Step 2: Functional specification

= For this problem, it’s probably easiest
to start with a truth table. This way we
can explicitly show the relationship (>,
=, <) between the inputs.

= A four-input function has a sixteen-row
truth table. For convenience, the rows
are in binary numeric order from 0000
to 1111 for A1, AO, B1 and BO.

= For example, 01 < 10, so the sixth row
of the truth table (corresponding to
inputs A=01 and B=10) shows that
output L=1, while G and E are both 0.

A1 AO | B1 BO

—_ m, mS e, E R 2, 2 00 000000

O 2 0O0), 000,000 0O

L, O RO, OO OO, OO OO0 ~0O
Y el eoNollec Vol olle Nl ol o NN Ry N)
OO0 00O0O|-, =00~ = —=0|r

June 23, 2003 Basic circuit design and multiplexers 5

Step 3: Simplified Boolean expressions

= Let’s use K-maps to simplify our circuit. There are three functions (each
with the same inputs A1 AO B1 B0O), so we need three K-maps.

B1

0

A1

=

—

AO

B1

AO

1
1

— =IO O

O|lO0|(O|O

OO | O

BO

G(A1,A0,B1,B0) =
A1 AO BO’ +
AO B1’BO’ +
A1 B1’

June 23, 2003

A1

OO0 (O|(—
OO (=] ©
O|=|lO | O
=[O |O|O

BO

E(A1,A0,B1,B0) =

A1’AQ0’B1°BO’ +
A1’A0 B1°BO +
A1 AO B1 BO +
A1 AO’B1 BO’

Basic circuit design and multiplexers

1

A1

AO

O|lOo0|(O|O
OO0 (O ||—

QI O|I—m]| =

B

D
[
1
0
1

0

L(A1,A0,B1,B0) =
A1’AQ’BO +
A0’B1 BO +

A1’B1

G
E
L

Al —
ol
BO0—o

AD—
BO0—o

Al —
Bl
Al
B0

Al
B1—

June 23, 2003

AD—o
BO— Bl —

Step 4: Drawing the circuits

= A1 A0 BO’ + AO B1’BO’ + A1 B1’
A1’A0’B1°BO’ + A1’A0 B1°BO + A1 AO B1 BO + A1 AO’B1 B0’
A1’A0’BO + AO’B1 BO + A1’B1

LogicWorks has gates A0—
with inverted inputs e
(the small bubbles) for Al—]
clearer diagrams. ’;‘?:
BO—

Basic circuit design and multiplexers

Testing this in LogicWorks

= |n LogicWorks, binary switches provide inputs to your circuit, and binary
probes display the outputs.

switches

June 23, 2003

Al—
AD—
BO—

AD—
Bl
B0

Al —

Al
AD—o
B1—o

Al
B1—o
AD—

I

Bl

Al
Al
BO—

AD—o
B1—
BO—

Al

BO—

Al —
AD—
B1—
BO—

T

Bl —
J L AD—o
BO—o

I

B1—

Basic circuit design and multiplexers

probe

Circuit design issues

= We had to find a suitable data representation for the inputs and outputs.
— The inputs were just two-bit binary numbers.

— We used three outputs, one for each possibility of the numbers being
greater than, equal to, or less than each other. This is called a “one
out of three” code.

= K-maps have advantages but also limitations.
— Qur circuits are relatively simple two-level implementations.

— But E(A1,A0,B1,B0) couldn’t be simplified at all via K-maps. Could we
do better using Boolean algebra?

= Qur circuit isn’t very extensible.

— We used a brute-force approach, listing all inputs and outputs. This
makes it hard to extend our circuit to compare larger numbers.

— We’ll have a better solution after we talk about computer arithmetic.
= There are always many possible ways to design a circuit!

June 23, 2003 Basic circuit design and multiplexers

Multiplexers

= Let’s think about building another circuit, a multiplexer.
* In the old days, several machines could share an I/0 device with a switch.

= The switch allows one computer’s output to go to the printer’s input.

June 23, 2003 Basic circuit design and multiplexers 10

A 2-to-1 multiplexer

= Here is the circuit analog of that printer switch.

— S

— D1 Q —
— DO

= This is a 2-to-1 multiplexer, or mux.
— There are two data inputs DO and D1, and a select input called S.
— There is one output named Q.

= The multiplexer routes one of its data inputs (DO or D1) to the output Q,
based on the value of S.

— If S=0, the output will be DO.
— If S=1, the output will be D1.

June 23, 2003 Basic circuit design and multiplexers

Building a multiplexer

= Here is a truth table for the multiplexer, based on
our description from the previous page:

The multiplexer routes one of its data
inputs (DO or D1) to the output Q, based
on the value of S.

— If S=0, the output will be DO.
— If S=1, the output will be D1.

= You can then find an MSP for the mux output Q.
Q=S’D0 + S D1

= Note that this corresponds closely to our English
specification above—sometimes you can derive an
expression without first making a truth table.

June 23, 2003 Basic circuit design and multiplexers

S D1 DO| Q
0O 0 060
O 0 1] 1
o 1 00
o 1 1] 1
1T 0 010
1T 0 110
1T 1 0] 1
1T 1 11

S

D1 Q

DO

12

Multiplexer circuit diagram

= Here is an implementation of a 2-to-1 multiplexer.

--

DO

Q=5’D0 + S D1

= Remember that a minimal sum of products expression leads to a minimal
two-level circuit.

June 23, 2003 Basic circuit design and multiplexers 13

Blocks, abstraction and modularity

= Multiplexers are common enough that we often want to treat them as
abstract units or black boxes, as symbolized by our block diagrams.

— Block symbols make circuit diagrams simpler, by hiding the internal
implementation details. You can use a device without knowing how
it’s designed, as long as you know what it does.

— Different multiplexer implementations should be interchangeable.

— Circuit blocks also aid hardware re-use, since you don’t have to keep
building a multiplexer from scratch every time you need one.

= These blocks are similar to functions in programming languages!

June 23, 2003 Basic circuit design and multiplexers 14

Enable inputs

= Many devices have an additional enable input,
which “activates” or “deactivates” the device.

= We could design a 2-to-1 multiplexer with an
enable input that’s used as follows.

— EN=0 disables the multiplexer, which forces
the output to be 0. (It does not turn off the
multiplexer.)

— EN=1 enables the multiplexer, and it works
as specified earlier.

= Enable inputs are especially useful in combining
smaller muxes together to make larger ones, as
we’ll see later today.

— EN
— S

D1
DO

[-

June 23, 2003 Basic circuit design and multiplexers

EN S D1 DO| Q
0O 0 O 0710
o 0 0 110
o 0 1 010
o 0 1 110
o 1 0 00
o 1 0 110
o 1 1 010
o 1 1 110
1 0 0 0O
1T 0 0 1|1
1 0 1 0[O
1T 0 1 111
1 1 0 O0/(O
1 1 0 110
1T 1 1 01
T 1 1 111
15

Truth table abbreviations

= Notice that when EN=0, then Q is always 0,

EN DI regardless of what S, D1 and DO are set to.

8 8 8 ? 8 = We can shorten the truth table by including Xs
0o o 1 0lo in the input variable columns, as shown on the
o 0 1 110 bottom right.

O 1 0 01O

o 1 0 110

o 1 1 010 EN S D1 DO| Q

0o 1 1 110 0 x x x1]0

1 0 0 0]O0 1 0 0 o010

1 0 0 1] 1 1 0 0 1] 1

1 0 1 010 1 0 1 010

1 0 1 111 q 1T 0 1 111

1 1 0 010 1 1 0 010

1 1 0 110 1 1 0 110

1T 1 1 0] 1 1 1 1 01 1

1T 1 1 111 1 1 1 111

June 23, 2003 Basic circuit design and multiplexers 16

Another abbr. 4 U

Also, when EN=1 notice that if S=0 then Q=D0, but if S=1 then Q=D1.

Another way to abbreviate a truth table is to list input variables in the
output columns, as shown on the right.

EN S DI DO|Q
0 x x x 1|0
1 0 0 0|0
10 0 1|1 Eong
1 0 1 00 X
10 1 1| 1| WSS 1 0 |Do
1 1 0 0|0 1 1 |Di
1 1 0 10
11 1 0|1
11 1 1|1

This final version of the 2-to-1 multiplexer truth table is much clearer,
and matches the equation Q = S’D0 + S D1 very closely.

June 23, 2003 Basic circuit design and multiplexers

17

A KVM switch

This KVM switch allows four computers to share a single keyboard, video
monitor, and mouse.

June 23, 2003 Basic circuit design and multiplexers 18

A 4-to-1 multiplexer

= Here is a block diagram and abbreviated truth table for a 4-to-1 mux,
which directs one of four different inputs to the single output line.

— There are four data inputs, so we need two bits, S1 and SO, for the
mux selection input.

— LogicWorks multiplexers have active-low enable inputs, so the mux
always outputs 1 when EN’ = 1. This is denoted on the block symbol
with a bubble in front of EN.

o EN EN’ S1 SO Q
— 81 0 0 0 DO
—1=0 0 0 1 D1
. gg 0 1 0 D2
— D1 Q— 0 1 1 D3
B 1 X X 1

Q =51’S0’D0 + S1°S0 D1 + S1 S0°D2 + S1 S0 D3

June 23, 2003 Basic circuit design and multiplexers 19

A 4-to-1 multiplexer implementation

= Again we have a minimal sum of products expression, which leads to a
minimal two-level circuit implementation.

s1 S0
......... ._‘._‘
Yo
D3
D2
D1
DO

Q =51’S0’D0 + S1°’S0 D1 + S1 S0°D2 + S1 S0 D3

June 23, 2003 Basic circuit design and multiplexers 20

2"-to-1 multiplexers

= You can make even larger multiplexers, following the same pattern.
= A 2"-to-1 multiplexer routes one of 2" input lines to the output line.
— There are 2" data inputs, so there must also be n select inputs.
— The output is a single bit.
= Here is an 8-to-1 multiplexer, probably the biggest we’ll see in this class.

b

EN

52
S1
S0

D7
D6
D5
D4 _
D3 Q
D2
D1
DO

June 23, 2003 Basic circuit design and multiplexers 21

Example: addition

= Multiplexers can sometimes make circuit design easier.
= As an example, let’s make a circuit to add three 1-bit inputs X, Y and Z.
= We’'ll need two bits to represent the total.
— The bits will be called C and S, standing for “carry” and “sum.”
— These are two separate functions of the inputs X, Y and Z.
= A truth table and sum of minterm equations for C and S are shown below.

0+1+1=10—p

—_ _m a0 000X
_ =00 - =00
O~ 0~ 0 -_0|N
—_ _ e, O, 000N
OO0 0 —_-A=-0|Wnm

1+1+1=11—P

June 23, 2003 Basic circuit design and multiplexers 22

Implementing functions with multiplexers

= We could implement a function of n variables with an n-to-1 multiplexer.

— The mux select inputs correspond to the function’s input variables,
and are used to select one row of the truth table.

— Each mux data input corresponds to one output from the truth table.
We connect 1 to data input Di for each function minterm m;, and we
connect 0 to the other data inputs.

= For example, here is the carry function, C(X,Y,Z) = ¥m(3,5,6,7).

X Y Z|C iEN
O 0 0|0 X— 82
0 0 10 Ly
01 010 M
O 1 111 1—32
1 0 0|0 0—|p4
10 1]1 103 & it
1 1 0 1 0— D1
1 1 1] 1 0— Do

June 23, 2003 Basic circuit design and multiplexers 23

Partitioning the truth table

= We can actually implement C(X,Y,Z) = m(3,5,6,7)
with just a 4-to-1 mux, instead of an 8-to-1.

— Instead of using three variables to select one row
of the truth table, we’ll use two variables to pick
a pair of rows in the table.

— The multiplexer data inputs will be functions of
the remaining variable, which distinguish between
the rows in each pair.

= First, we can divide the rows of our truth table into
pairs, as shown on the right. X and Y are constant
within each pair of rows, so C is a function of Z only.

— When XY=00, C=0
— When XY=01, C=Z
— When XY=10, C=Z
— When XY=11, C=1

June 23, 2003 Basic circuit design and multiplexers

XY Z]|C
O 0 010
O 0 110
O 1 010
O 1 1] 1
1 0 010
1 0 111
1 1 0] 1
1T 1 1] 1
24

A more efficient adder

= All that’s left is setting the multiplexer inputs.
— The two input variables X and Y will be connected to select inputs 51
and SO of our 4-to-1 multiplexer.

— The expressions for C(Z) are then connected to the data inputs DO-D3
of the multiplexer.

XY Z]|C
0 0 0/O0 o)
00 110 When XY=00, C=0 Ty
X_

0 1 010 whenxy=01, C=Z Y|S0
0 1 1|1 o
1 0 010 _ _ %: gf Q—CX.Y,Z)
10 1|1 When XY=10, C=Z 0|2
1T 1 01

—_ =1
11| When XY=11, C

June 23, 2003 Basic circuit design and multiplexers 25

Verifying our adder

Don’t believe that this works? Start with the equation
for a 4-to-1 multiplexer from earlier in the lecture.

Q =51’S0’D0 + 51°S0 D1 + S1 S0°D2 + S1 S0 D3

Then just plug in the actual inputs to our circuit, as
shown again on the right: S150 = XY, D3 =1, D2 = Z,
D1 =1, and DO = 0.

C=XY o0+ X'YZ + XY’Z + XYo1
= X’YZ + XY’Z + XY
= X’YZ + XY’Z + XY(Z’ + Z)
= X’YZ + XY’Z + XYZ’ + XYZ

So the multiplexer output really is the carry function,
C(X,Y,Z) = ¥m(3,5,6,7).

June 23, 2003 Basic circuit design and multiplexers

EN

51
S0

D3
D2
D1
DO

—CX.,Y,Z)

26

Multiplexer-based sum

= Here’s the same thing for the sum function, S(X,Y,Z) = ¥m(1,2,4,7).

X Y 2|5

00 0/o0 o
00 111 When XY=00, S=7
01 0111 whenxy=01, 5=2’
01 1|0

1 0 0] 1 i el
10 110 When XY=10, S=7
1 1 0] 0 el
© 1 1| | Whenxy=11, 5=

= Again, we can show that this is a correct implementation.

Q =51’S0°DO0 + S1°S0 D1 + S1 S0°D2 + S1 S0 D3
=XY'Z+ XYL + XYL’ + XYL

=2m(1,2,4,7)

EN

51
S0

D3
D2
D1
DO

—S(X,Y,2)

June 23, 2003 Basic circuit design and multiplexers

27

Dual multiplexers

= A dual 4-to-1 mux allows you to select from one of four 2-bit data inputs.

= The Mux-4x2 T.S. device in LogicWorks is shown here.
— The two output bits are 2Q 1Q, and 51-50 select a pair of inputs.
— LogicWorks labels the x-th bit of data input vy as xDy.

June 23, 2003

&

EN

51
S0

2D3
2D2
2D1
2D0

1D3
1D2
1D1
1D0

EN’ $1 SO | 2Q 1Q
0 0 0O | 2D0O 1DO
20— 0 0 1 2D1 1D1
0 1 0 | 2D2 1D2
0 1 1 2D3 1D3
10— 1 X X 1 1

Basic circuit design and multiplexers

28

Dual muxes in more detail

= You could build a dual 4-to-1 mux from
its truth table and our familiar circuit
design techniques.

= |t’s also possible to combine smaller
muxes together to form larger ones.

= You can build the dual 4-to-1 mux just
by using two 4-to-1 muxes.

— The two 4-to-1 multiplexers share
the same EN’, S1 and SO signals.

— Each smaller mux produces one bit
of the two-bit output 2Q 1Q.

= This kind of hierarchical design is very
common in computer architecture.

EN':

S1
S0

2D3
2D2
2D1
2D0

1D3
1D2
1D1
1D0

& 2 EN

* 51

* S0

D3

D2 q

D1

DO

51
S0

D3

D2 q

D1

DO

June 23, 2003 Basic circuit design and multiplexers

20Q

1Q

29

Dual multiplexer-based adder

= We can use this dual 4-to-1 multiplexer to implement our adder, which
produces a two-bit output consisting of C and S.

_ _ Lolen
T, T, X— 81
EN EN Y— 50
X—] X—]
VS0 VS0 m— 1]2D3
Z712D2 5 c(X,Y,2)
1|ps3 £]p3 S Z—2D1 o
77192 o—cxv.z) 7 1B2 o—sxYZ) 0—2D0
0—D0 Z—Do Z—1D3
Z71D2 4ol -S(X,Y,2Z)
Z'—1D1 '
Z—1D0

= That KVM switch from earlier is really a “tri 4-to-1 multiplexer,” since it
selects from four sets of three signals (keyboard, video and mouse).

June 23, 2003 Basic circuit design and multiplexers 30

Summary

Today we began designing circuits!

— Starting from a problem description, we came up with a truth table
to show all possible inputs and outputs.

— Then we built the circuit using primitive gates or multiplexers.

A 2"-to-1 multiplexer routes one of 2" inputs to a single output line.

— Muxes are a good example of our circuit design techniques.

— They also illustrate abstraction and modularity in hardware design.
— We saw some variations such as active-low and dual multiplexers.

Tomorrow we’ll present another commonly-used device and show how it
can also be used in larger circuits.

June 23, 2003 Basic circuit design and multiplexers 31

	Basic circuit design and multiplexers
	Designing circuits
	Example: comparing 2-bit numbers
	Step 1: How many inputs and outputs?
	Step 2: Functional specification
	Step 3: Simplified Boolean expressions
	Step 4: Drawing the circuits
	Testing this in LogicWorks
	Circuit design issues
	Multiplexers
	A 2-to-1 multiplexer
	Building a multiplexer
	Multiplexer circuit diagram
	Blocks, abstraction and modularity
	Enable inputs
	Truth table abbreviations
	Another abbr. 4 U
	A KVM switch
	A 4-to-1 multiplexer
	A 4-to-1 multiplexer implementation
	2n-to-1 multiplexers
	Example: addition
	Implementing functions with multiplexers
	Partitioning the truth table
	A more efficient adder
	Verifying our adder
	Multiplexer-based sum
	Dual multiplexers
	Dual muxes in more detail
	Dual multiplexer-based adder
	Summary

		hhuang@cs.uiuc.edu
	2003-06-24T00:19:06-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

