Subtraction

- The arithmetic we did so far was limited to unsigned (positive) integers.
- Today we'll consider negative numbers and subtraction.
 - The main problem is representing negative numbers in binary. We introduce three methods, and show why one of them is the best.
 - With negative numbers, we'll be able to do subtraction using the adders we made last time, because A B = A + (-B).

Representations and algorithms

- Today we'll look at three different representations of signed numbers.
 - The best one will result in the simplest and fastest operations.
 - This is just like choosing a data structure in programming.
- We're mostly concerned with two particular operations.
 - 1. Negating a signed number, or finding -x from x.
 - 2. Adding two signed numbers, or computing x + y.

Signed magnitude representation

- Humans use the signed-magnitude system. We add + or to the front of a number to indicate its sign.
- We can do this in binary too, by adding a sign bit in front of our numbers.
 - A 0 sign bit represents a positive number.
 - A 1 sign bit represents a negative number.

1101 ₂ = 13 ₁₀	(a 4-bit unsigned number)
$0 1101 = +13_{10}$	(a positive number in 5-bit signed magnitude)
$1\ 1101\ =\ -13_{10}$	(a negative number in 5-bit signed magnitude)
$0100_2 = 4_{10}$	(a 4-bit unsigned number)

- $0\,0100 = +4_{10}$ (a positive number in 5-bit signed magnitude)
- 1 0100 = -4_{10} (a negative number in 5-bit signed magnitude)

Signed magnitude operations

- Negating a signed-magnitude number is trivial—just change the sign bit from 0 to 1 or vice versa.
- Adding numbers is difficult. Like grade-school addition, signed magnitude addition is based on comparing the signs of the augend and addend.
 - If they have the same sign, add the magnitudes and keep that sign.
 - If they have different signs, then subtract the smaller magnitude from the larger. The result has the same sign as the operand with the larger magnitude.
- This method of subtraction would lead to a rather complex circuit.

							5	13	17	
	+	3	7	9			6	4	7	
+	_	6	4	7	because	_	3	7	9	
	_	2	6	8	-		2	6	8	

Ones' complement representation

- In a different representation, ones' complement, we negate numbers by complementing each bit of the number.
- We keep the sign bits: 0 for positive numbers, and 1 for negative.
- The sign bit is complemented along with the rest of the bits.

1101 ₂ = 13 ₁₀	(a 4-bit unsigned number)
$0 1101 = +13_{10}$	(a positive number in 5-bit ones' complement)
$1\ 0010\ =\ -13_{10}$	(a negative number in 5-bit ones' complement)
$0100_2 = 4_{10}$	(a 4-bit unsigned number)

- $0\ 0100 = +4_{10}$ (a positive number in 5-bit ones' complement)
- 1 1011 = -4_{10} (a negative number in 5-bit ones' complement)

Why is it called ones' complement?

• Complementing a single bit is equivalent to subtracting it from 1.

- Similarly, complementing each bit of an *n*-bit number is equivalent to subtracting that number from 2ⁿ-1.
- For example, we can negate the 5-bit number 01101.
 - Here n=5, and $2^{5}-1 = 11111_{2}$.
 - Subtracting 01101 from 11111 yields 10010.

Ones' complement addition

- There are two steps in adding ones' complement numbers.
 - 1. Do unsigned addition on the numbers, *including* the sign bits.
 - 2. Take the carry out and add it to the sum.

0111	(+7)	0011	(+3)
+ 1011	+ (-4)	+ 0010	+ (+2)
1 0 0 1 0		00101	
0010		0101	
+ 1		+ 0	
0011	(+3)	0 1 0 1	(+5)

This is simpler than signed magnitude addition, but still a bit tricky.

Two's complement representation

 Our final idea is two's complement. To negate a number, we complement each bit (just as for ones' complement) and then add 1.

$1101_2 = 13_{10}$	(a 4-bit unsigned number)
$0 1101 = +13_{10}$	(a positive number in 5-bit two's complement)
$1\ 0010\ =\ -13_{10}$	(a negative number in 5-bit ones' complement)
$1\ 0011\ =\ -13_{10}$	(a negative number in 5-bit two's complement)

$0100_2 = 4_{10}$	(a 4-bit unsigned number)
$0\ 0100\ =\ +4_{10}$	(a positive number in 5-bit two's complement)
$1\ 1011\ =\ -4_{10}$	(a negative number in 5-bit ones' complement)
$1\ 1100\ =\ -4_{10}$	(a negative number in 5-bit two's complement)

 People often talk about "taking the two's complement" of a number. This is a confusing phrase, but it usually means to negate some number that's *already* in two's complement format.

More about two's complement

 Another way to negate an *n*-bit two's complement number is to subtract it from 2ⁿ.

100000		10000	
- 01101	(+13 ₁₀)	- 00100	(+4 ₁₀)
10011	(-13 ₁₀)	11100	(-4 ₁₀)

- You can also complement all of the bits to the left of the rightmost 1.
 - $01101 = +13_{10}$ (a positive number in two's complement)
 - $10011 = -13_{10}$ (a negative number in two's complement)
 - $00100 = +4_{10}$ (a positive number in two's complement)
 - 11100 = -4_{10} (a negative number in two's complement)

Two's complement addition

- Negating a two's complement number takes a bit of work, but addition is much easier than with the other two systems.
- To find A + B, you just have to do unsigned addition on A and B (including their sign bits), and *ignore* any carry out.
- For example, we can compute 0111 + 1100, or (+7) + (-4).

- First add 0111 + 1100 as unsigned numbers.

0 1 1 1 + 1 1 0 0 1 0 0 1 1

- Ignore the carry out (1). The answer is 0011 (+3).

Another two's complement example

- To further convince you that this works, let's try adding two negative numbers—1101 + 1110, or (-3) + (-2) in decimal.
- Adding the numbers gives 11011.

Dropping the carry out (1) leaves us with the answer, 1011 (-5).

Two's complement arithmetic is modular

- Here are the 4-bit two's complement numbers and their decimal values.
- As with modular "clock" arithmetic, let's think of subtraction as moving counterclockwise around the circle, and addition as moving clockwise.

Subtracting x...

- For example, to subtract 6 from 1, go counterclockwise six positions from 1.
- You'll find the answer is -5.

... is equivalent to adding 16 - x

- This is the same result you would get if you added 10 to 1 instead!
- Subtracting 6 is the same as adding 10, which is why we represent -6 as the unsigned value 10.
- In general, we can always subtract x by adding 16 - x.

An algebraic explanation

For *n*-bit numbers, the negation of B in two's complement is 2ⁿ - B. (This was one of the alternate ways of negating a two's complement number.)

$$A - B = A + (-B)$$

= A + (2ⁿ - B)
= (A - B) + 2ⁿ

- If $A \ge B$, then (A B) has to be positive, and the 2^n represents a carry out of 1. Discarding this carry out leaves us with the desired result, (A B).
- If A < B, then (A B) must be negative, and 2ⁿ (A B) corresponds to the correct result -(A B) in two's complement form.

Comparing the signed number systems

- Here are all the 4-bit numbers in the different systems.
- Positive numbers are the same in all three representations.
- There are *two* ways to represent 0 in signed magnitude and ones' complement. This makes things more complicated.
- In two's complement, there is one more negative number than positive number. Here, we can represent -8 but not +8.
- However, two's complement is preferred because it has only one 0, and its addition algorithm is the simplest.

Decimal	SM	1C	2C
7	0111	0111	0111
6	0110	0110	0110
5	0101	0101	0101
4	0100	0100	0100
3	0011	0011	0011
2	0010	0010	0010
1	0001	0001	0001
0	0000	0000	0000
-0	1000	1111	_
-1	1001	1110	1111
-2	1010	1101	1110
-3	1011	1100	1101
-4	1100	1011	1100
-5	1101	1010	1011
-6	1110	1001	1010
-7	1111	1000	1001
-8	—	—	1000

Ranges of the signed number systems

 How many negative and positive numbers can be represented in each of the different four-bit systems on the previous page?

	Unsigned	SM	1C	2C
Smallest	0000 (0)	1111 (-7)	1000 (-7)	1000 (-8)
Largest	1111 (15)	0111 (+7)	0111 (+7)	0111 (+7)

• The ranges for general *n*-bit numbers (including the sign bit) are below.

	Unsigned	SM	1C	2C
Smallest	0	-(2 ^{<i>n</i>-1} -1)	-(2 ^{<i>n</i>-1} -1)	-2 ⁿ⁻¹
Largest	2 ^{<i>n</i>} -1	+(2 ^{<i>n</i>-1} -1)	+(2 ^{<i>n</i>-1} -1)	+(2 ^{<i>n</i>-1} -1)

- Convert 110101 to decimal, assuming several different representations.
 Since the sign bit is 1, this is a negative number. The easiest way to find the magnitude is to negate it.
 - (a) signed magnitude format

Negating the original number, 110101, gives 010101, which is +21 in decimal. So 110101 must represent -21.

(b) ones' complement

Negating 110101 in ones' complement yields $001010 = +10_{10}$, so the original number must have been -10_{10} .

(c) two's complement

Negating 110101 in two's complement gives $001011 = 11_{10}$, which means $110101 = -11_{10}$.

 The most important point is that a binary value has *different* meanings depending on which number representation is assumed.

Making a subtraction circuit

Here is the four-bit unsigned addition circuit from last Wednesday.

- We could build a subtraction circuit like this too.
- An alternative solution is to re-use this unsigned adder by converting subtraction operations into addition.
- To subtract B from A, we can *add* the negation of B to A.

$$A - B = A + (-B)$$

A two's complement subtraction circuit

- Our circuit has to add A to the two's complement negation of B.
 - We can complement B by inverting the input bits B3 B2 B1 B0.
 - We can add by setting the carry in to 1 instead of 0.

- The sum is A + (B' + 1), which is the two's complement subtraction A B.
- Remember that A3, B3 and S3 here are actually sign bits.

Small differences

- There are only two differences between an adder and subtractor circuit.
 - The subtractor has to negate B3 B2 B1 B0.
 - The subtractor sets the initial carry in to 1, instead of 0.
- It's not hard to make one circuit that does both addition and subtraction.

• XOR gates let us selectively complement the B input.

$$X \oplus 0 = X \qquad \qquad X \oplus 1 = X'$$

- When Sub = 0, the XOR gates output B3 B2 B1 B0 and the carry in is 0. The adder output will be A + B + 0, or just A + B.
- When Sub = 1, the XOR gates output B3' B2' B1' B0' and the carry in is 1. Thus, the adder output will be a two's complement subtraction, A - B.

July 1, 2003

Subtraction

Signed overflow

- With 4-bit two's complement numbers, the largest representable decimal value is +7, and the smallest is -8.
- What if you try to compute 4 + 5, or (-4) + (-5)?

0100	(+4)	1100	(-4)
+ 0101	+ (+5)	+ 1011	+ (-5)
01001	(-7)	10111	(+7)

- Signed overflow is very different from unsigned overflow.
 - The carry out is not enough to detect overflow. In the example on the left, the carry out is 0 but there *is* overflow.
 - Also, we cannot include the carry out to produce a five-digit result. In the example on the right, (-4) + (-5) should *not* result in +23!

• The easiest way to detect signed overflow is to look at all the sign bits.

- Overflow occurs only in the two situations above.
 - 1. If you add two *positive* numbers and get a *negative* result.
 - 2. If you add two *negative* numbers and get a *positive* result.
- Overflow can never occur when you add a positive number to a negative number. (Do you see why?)

Sign extension

 Decimal numbers are assumed to have an infinite number of 0s in front of them, which helps in "lining up" values for arithmetic operations.

- You need to be careful in extending signed binary numbers, because the leftmost bit is the *sign* and not part of the magnitude.
- To extend a signed binary number, you have to replicate the sign bit. If you just add 0s in front, you might accidentally change a negative number into a positive one!
- For example, consider going from 4-bit to 8-bit numbers.

Summary

- Data representations are all-important!
 - A good representation for negative numbers can make subtraction hardware much simpler to design.
 - Using two's complement, it's easy to build a single circuit for both addition and subtraction.
- Working with signed numbers involves several issues.
 - Signed overflow is very different from the unsigned overflow we talked about last week.
 - Sign extension is needed to properly "lengthen" negative numbers.

