
July 8, 2003 ©2000-2003 Howard Huang 1

Flip-flops

The second part of CS231 focuses on sequential circuits, in which we add 
memory to our circuits.
The schedule will be very similar the first third of the class. 
— We first show how primitive memory units are built.
— Then we talk about analysis and design of sequential circuits.
— We also present common devices like registers and counters.

In the final third of the summer, we’ll add memory to our ALU, to make a 
complete processor!



July 8, 2003 Flip-flops 2

Combinational circuits

Combinational
circuitInputs Outputs

So far we’ve only worked with combinational circuits, where applying the 
same inputs always produces the same outputs.
— This corresponds to a mathematical function, where every input has a 

single, unique output.
— In programming terminology, combinational circuits are similar to 

“functional programs” that do not contain variables and assignments.
Such circuits are comparatively easy to design and analyze.



July 8, 2003 Flip-flops 3

Sequential circuits

Combinational
circuit

Inputs

Memory

Outputs

In contrast, the outputs of a sequential circuit depend on not only the 
inputs, but also the state, or the current contents of some memory.
This makes things more difficult to understand since the same inputs can 
yield different outputs, depending on what’s stored in memory.
The memory contents can also change as the circuit runs, so the order in 
which things occur makes a difference.



July 8, 2003 Flip-flops 4

Examples of sequential devices

Many real-life devices are sequential in nature.
— Combination locks open if you enter numbers in the right order.
— Elevators move up or down and open or close in response to buttons 

that are pressed on different floors and in the elevator itself.
— Traffic lights change from red to green depending on whether a car is 

waiting at the intersection.
More importantly for us, computers are sequential! For instance, key 
presses and mouse clicks have different effects based on which program 
is loaded into memory, and the state of that program.



July 8, 2003 Flip-flops 5

What exactly is memory?

A memory should support at least three operations.

1. It should be able to hold a value.
2. You should be able to read the value that is saved.
3. You should be able to change that value.

We’ll start with the simplest case, a one-bit memory.

1. It should be able to hold a single bit, 0 or 1.
2. You should be able to read the bit that is saved.
3. You should be able to change the bit. 

— You can set the bit to 1
— You can reset or clear the bit to 0.



July 8, 2003 Flip-flops 6

The basic idea of storage

How can a circuit remember anything, when it’s just a bunch of gates 
that produce outputs according to the inputs?
The idea is to make a loop in a circuit, so the outputs are also inputs.
Here is one initial attempt, shown with two equivalent layouts.

Does this satisfy the properties of memory?
— These circuits “remember” Q since its value never changes. Similarly, 

Q’ never changes either.
— We can “read” Q by sending it to another gate or device, as usual.
— But we can’t change Q! There are no external inputs here, so we can’t 

control whether Q=1 or Q=0.



July 8, 2003 Flip-flops 7

A really confusing circuit

Let’s use NOR gates instead of inverters. The SR latch here has two inputs 
S and R, which will let us control the outputs Q and Q’.

Q and Q’ feed back into the circuit, so they’re not only outputs, they’re 
also inputs!
To figure out how Q and Q’ change, we must look at not only the inputs S 
and R, but also the current values of Q and Q’.

Qnext = (R + Q’current)’
Q’next = (S + Qcurrent)’

Let’s see how different input values for S and R affect this thing.



July 8, 2003 Flip-flops 8

Storing a value: SR = 00

What if S = 0 and R = 0?
The equations on the right reduce to:

Qnext = (0 + Q’current)’ = Qcurrent

Q’next = (0 + Qcurrent)’ = Q’current

So when SR = 00, then Qnext = Qcurrent.
This is exactly what we need to store values in 
the latch.

Qnext = (R + Q’current)’
Q’next = (S + Qcurrent)’



July 8, 2003 Flip-flops 9

Setting the latch: SR = 10

What if S = 1 and R = 0?
Since S = 1, Q’next is 0, regardless of Qcurrent.

Q’next = (1 + Qcurrent)’ = 0

Then this new value of Q’ goes into the top NOR 
gate, along with R = 0.

Qnext = (0 + 0)’ = 1

So when SR = 10, then Q’next = 0 and Qnext = 1. 
This is how you set the latch to 1; the S input 
stands for “set.”
Notice it can take up to two steps (two gate 
delays) from the time S becomes 1 to the time 
Qnext becomes 1. 
But once Qnext becomes 1, the outputs will stop 
changing. This is a stable state.

Qnext = (R + Q’current)’
Q’next = (S + Qcurrent)’



July 8, 2003 Flip-flops 10

Latch delays

Timing diagrams are especially useful for seeing 
how sequential circuits work.
Here is a diagram which shows an example of how 
our latch outputs change with inputs SR = 10.

0. Let’s say that Q = 0 and Q’ = 1 initially.

1. Since S = 1, Q’ changes from 1 to 0 after one 
NOR-gate delay (marked with vertical lines in 
the timing diagram).

2. This change in Q’, along with R = 0, causes Q 
to become 1 after another gate delay.

3. The latch then stabilizes until S or R change 
again. 

Qnext = (R + Q’current)’
Q’next = (S + Qcurrent)’

0 1 2 3 4

S

R

Q

Q’



July 8, 2003 Flip-flops 11

Resetting the latch: SR = 01

What if S = 0 and R = 1? 
Since R = 1, Qnext is 0, regardless of Qcurrent.

Qnext = (1 + Q’current)’ = 0

Then this new value of Q goes into the bottom 
NOR gate, where S = 0.

Q’next = (0 + 0)’ = 1

So when SR = 01, then Qnext = 0 and Q’next = 1. 
This is how you reset, or clear, the latch to 0; 
the R input stands for “reset.”
Again, it can take two gate delays before a 
change in R propagates to the output Q’next.

Qnext = (R + Q’current)’
Q’next = (S + Qcurrent)’



July 8, 2003 Flip-flops 12

SR latches are memories!

This characteristic table shows that our 
latch provides everything we need in a 
memory: we can set it, reset it, or keep 
the current value.

The output Q represents the data stored 
in the latch. It is also called the state of 
the latch.

We can expand the table above into a 
state table, which explicitly shows that 
the next values of Q and Q’ depend on 
their current values, as well as on the 
inputs S and R.

1 (set)01
0 (reset)10

No change00

QRS

010101
011001

100110
101010

010100
101000

Q’QQ’QRS
NextCurrentInputs



July 8, 2003 Flip-flops 13

SR latches are sequential!

Note that for SR = 00, the next value of Q 
could be either 0 or 1, depending on the 
current value of Q.
So the same inputs can produce different 
outputs, depending on whether the latch 
is currently set or reset.
This is different from the combinational 
circuits that we’ve seen so far, where the 
same inputs always generate the same 
outputs.

1 (set)01
0 (reset)10

No change00

QRS

010101
011001

100110
101010

010100
101000

Q’QQ’QRS
NextCurrentInputs



July 8, 2003 Flip-flops 14

What about SR = 11?

Both Qnext and Q’next would become 0, which 
contradicts the assumption that Q and Q’ are 
always complements.
Another problem is what happens if we then 
make S = 0 and R = 0 together.

Qnext = (0 + 0)’ = 1
Q’next = (0 + 0)’ = 1

But these new values go back into the NOR 
gates, and we then get Q = Q’ = 0 again.

Qnext = (0 + 1)’ = 0
Q’next = (0 + 1)’ = 0

So the circuit enters an infinite loop, where 
Q and Q’ cycle between 0 and 1 forever.
Don’t set SR = 11!

Qnext = (R + Q’current)’
Q’next = (S + Qcurrent)’

0

0

0

0

0

0

1

1



July 8, 2003 Flip-flops 15

S’R’ latch

There are several other variations of the basic latch.
You can use NAND instead of NOR gates to get a S’R’ latch.

This is just like an SR latch but with inverted inputs, as you can see from 
the table. 

Avoid!00
1 (set)10

0 (reset)01
No change11

QR’S’



July 8, 2003 Flip-flops 16

An SR latch with a control input

Here is an SR latch with a control input C, which acts like an enable.

Notice the hierarchical design!
— The dotted blue box contains the S’R’ latch from the previous slide.
— The additional NAND gates are simply used to generate appropriate 

inputs for the S’R’ latch.
We’ll see more of the control input later today.

Evil!00111
1 (set)10011

0 (reset)01101
No change11001
No change11xx0

QR’S’RSC



July 8, 2003 Flip-flops 17

D latch

A D latch is also based on an S’R’ latch. The additional gates generate the 
S’ and R’ signals, based on inputs D (“data”) and C (“control”).
— When C = 0, S’ and R’ are both 1, so Q does not change.
— When C = 1, the latch output Q will equal the input D.

There are two main advantages of a D latch.
— No more messing with one input for set and another input for reset!
— This latch has no “bad” input combinations to avoid. Any of the four 

possible assignments to C and D are valid.

111
001

No changex0

QDC



July 8, 2003 Flip-flops 18

Using latches in real life

We can use some D latches as a memory for an ALU. The latches should 
normally be disabled, so unwanted data doesn’t accidentally get stored.

Let’s say the latches initially hold 0000, and we want to increment them. 
The ALU can first read and increment the current latch contents.

+1
ALU

S
X

G

Latches
D

Q
C 0

0000

+1
ALU

S
X

G

Latches
D

Q
C

0001

0



July 8, 2003 Flip-flops 19

Writing to the latches

The latches should be enabled only after the ALU finishes the increment 
operation, so the updated value can be stored. 

The latch must be quickly disabled again, before the ALU has a chance to 
read the new value 0001 and produce a new result 0010.

0000

+1
ALU

S
X

G

Latches
D

Q
C

0001

1

0

0001

+1
ALU

S
X

G

Latches
D

Q
C

0010



July 8, 2003 Flip-flops 20

Two main issues

So to use latches within a circuit, we have to remember two things.
— Keep the latches disabled until new values are ready to be stored.
— Enable the latches just long enough for the update to occur.

There are two main issues we need to address.

How do we know exactly when the new values are ready?

We’ll add another signal to our circuit. When this new value
changes to 1, the latches will know that the ALU computation
completed and data is ready to be stored.

How can we enable and then quickly disable the latches?

This can be done by combining latches together in a special
way, to form what are called flip-flops.



July 8, 2003 Flip-flops 21

Clocks and synchronization

A clock is a special device that continuously outputs 0s and 1s.
— The time it takes the clock to change from 1 to 0 and back to 1 is 

called the clock period, or clock cycle time.
— The clock frequency is the inverse of the clock period. The unit of 

measurement for frequency is the hertz.

Clocks are often used to synchronize circuits.
— They generate a repeating, predictable pattern of 0s and 1s that can 

trigger certain events in a circuit, such as writing to a latch.
— If several circuits share a common clock signal, they can coordinate 

their actions with respect to one another.
This is similar to how humans use real clocks for synchronization.

clock period



July 8, 2003 Flip-flops 22

Synchronizing our example

We can use a clock to synchronize our latches with the ALU.
— The clock signal is connected to the latch control input C.
— The clock controls the latches. When it becomes 1, the latches will be 

enabled for writing.

The clock period must be set appropriately for the ALU.
— It should not be too short. Otherwise, the latches will start writing 

before the ALU operation has finished.
— It should not be too long either. Otherwise the ALU may produce a 

new result that will get stored accidentally, as we saw before.
The faster the ALU runs, the shorter the clock period can be.

+1
ALU

S
X

G

Latches
D

Q
C



July 8, 2003 Flip-flops 23

Flip-flops

The second issue was how to enable a latch for just an instant.
Here is the internal structure of a D-type flip-flop.
— The flip-flop inputs are C and D, and the outputs are Q and Q’.
— The D latch on the left is the master, while the SR latch on the right is 

called the slave.

Note the layout here.
— The flip-flop input D is connected directly to the master latch.
— The master latch output goes to the slave.
— The flip-flop outputs come directly from the slave latch.



July 8, 2003 Flip-flops 24

D flip-flops when C=0

The D flip-flop’s control input C enables either the master D latch or the 
slave SR latch, but not both.
What happens when C = 0?
— The master latch is enabled, and it tracks the flip-flop input D. When 

D changes, the master’s output changes too.
— The slave is disabled, so the D latch output has no effect on it. Thus, 

the slave just maintains the flip-flop’s current state.



July 8, 2003 Flip-flops 25

D flip-flops when C=1

Several things happen as soon as C changes from 0 to 1.
— The master is disabled. Its output will be the last D input value seen, 

just before C became 1. Any subsequent changes to the D input will 
have no effect on the master latch while C = 1.

— On the other hand, the slave is enabled. Its output changes to reflect 
the master’s state, which again is the D input value from right when C 
became 1.



July 8, 2003 Flip-flops 26

Positive edge triggering

This is called a positive edge-triggered flip-flop.
— The flip-flop output Q changes only after the positive edge of C.
— The change is based on the flip-flop input values that were present 

right at the positive edge of the clock signal.
The D flip-flop’s behavior is similar to that of a D latch, except for the 
positive edge-triggered nature, which is not explicit in this table.

1 (set)11
0 (reset)01

No changex0

QDC



July 8, 2003 Flip-flops 27

Direct inputs

One last thing to worry about… what is the starting value of Q?
We could set the initial value synchronously, at the next positive clock 
edge, but this actually makes circuit design more difficult.
Most flip-flops provide direct inputs, or asynchronous inputs, that let you 
immediately set or clear the state, regardless of the clock input.
— You would “reset” the circuit once, to initialize the flip-flops.
— The circuit would then begin its regular, synchronous operation.

Here is a LogicWorks D flip-flop with active-low direct inputs.

1 (set)1111
0 (reset)0111

No changex011

0 (reset)xx01
1 (set)xx10
Avoidxx00

QDCR’S’

Direct inputs set or reset 
the flip-flop asynchronously

Set S’R’ = 11 for normal 
operation of the flip-flop



July 8, 2003 Flip-flops 28

Our example with flip-flops

We can use the flip-flops’ direct inputs to initialize them to 0000.

During the clock cycle, the ALU outputs 0001, but this does not affect the 
flip-flops yet.

0000

+1
ALU

S
X

G

Flip-flops
D

Q
C

C 

Q0

G0

0000
0001

+1
ALU

S
X

G

Flip-flops
D

Q
C

C 

Q0

G0



July 8, 2003 Flip-flops 29

Example continued

The ALU output is stored in the flip-flops on the next positive clock edge.

The flip-flops “shut off” right after the positive clock edge, so no new 
values can be stored until the next positive edge.

0001
0001

+1
ALU

S
X

G

Flip-flops
D

Q
C

C 

Q0

G0

0001
0001

+1
ALU

S
X

G

Flip-flops
D

Q
C

C 

Q0

G0



July 8, 2003 Flip-flops 30

Summary

A sequential circuit has memory. It may respond differently to the same 
inputs, depending on its current state.
Latches are the simplest memory units, storing individual bits. But it’s 
difficult to control the timing of latches in a larger circuit.
To use latches in bigger circuits, we need to do two things.
— Keep the latches disabled until new values are ready to be stored.
— Enable the latches just long enough for the update to occur.

Flip-flops restrict memory writes to the positive edge of a clock signal.
Next week we’ll talk about how to analyze and design sequential circuits 
that use flip-flops as memory.


	Flip-flops
	Combinational circuits
	Sequential circuits
	Examples of sequential devices
	What exactly is memory?
	The basic idea of storage
	A really confusing circuit
	Storing a value: SR = 00
	Setting the latch: SR = 10
	Latch delays
	Resetting the latch: SR = 01
	SR latches are memories!
	SR latches are sequential!
	What about SR = 11?
	S’R’ latch
	An SR latch with a control input
	D latch
	Using latches in real life
	Writing to the latches
	Two main issues
	Clocks and synchronization
	Synchronizing our example
	Flip-flops
	D flip-flops when C=0
	D flip-flops when C=1
	Positive edge triggering
	Direct inputs
	Our example with flip-flops
	Example continued
	Summary

		hhuang@cs.uiuc.edu
	2003-07-07T23:41:34-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document




