
February 5, 2003 ©2001-2003 Howard Huang 1

MIPS examples

We’ve learned all of the important features of the MIPS instruction set
architecture, so now it’s time for some examples!
— First we’ll see a nested function, which calls another function.
— Next up is a demonstration of recursion.
— Finally we’ll work with some C-style strings.

This week’s sections will discuss how structures and objects can be stored
and manipulated in MIPS. You’ll also get some debugging practice, which
will be useful for the assignment that will appear later today.

February 5, 2003 MIPS examples 2

Combinations

Writing a function to compute combinations based on the fact code from
last time will illustrate the implementation of nested functions.
A mathematical definition of combinations is:

The corresponding C or Java code is shown below.

int comb(int n, int k)
{

return fact(n) / fact(k) / fact(n-k);
}

Looks easy, right?

n
k

n!
k! (n—k)!

=

February 5, 2003 MIPS examples 3

Look before you leap!

int comb(int n, int k)
{

return fact(n) / fact(k) / fact(n-k);
}

We use MIPS registers to represent the argument and return values.
— Arguments n and k are passed in caller-saved registers $a0 and $a1.
— The return value (an integer) is placed in $v0.

The arguments n and k are used multiple times—in particular, after the
function calls fact(n) and fact(k). We’ll have to save the original values of
$a0 and $a1, to ensure they aren’t overwritten by fact.
comb is a nested function, which means it also acts as a callee. We must
also preserve callee-saved registers such as $ra properly.
The return expression involves two divisions and requires one temporary
register in MIPS. We’ll use $s0 for illustrative purposes.

February 5, 2003 MIPS examples 4

Callee-saved registers

To summarize, comb will need to preserve
and restore four registers:

$ra $s0 $a0 $a1

comb is the callee in relation to whoever
calls it (e.g., main).
— Thus, comb is responsible for preserving

the callee-saved registers $ra and $s0,
which it will modify.

— It’s easiest to save them at the beginning
of the function, and to restore them right
before returning.

comb:
sub $sp, $sp, 8
sw $ra, 0($sp)
sw $s0, 4($sp)

... main body ...

lw $ra, 0($sp)
lw $s0, 4($sp)
addi $sp, $sp, 8
jr $ra

February 5, 2003 MIPS examples 5

Caller-saved registers

However, comb is the caller in relation to
the fact function.
— This means comb must store the caller-

saved registers $a0 and $a1 before it
calls fact, and restore them afterwards.

— We’ll allocate two additional words on
the stack for $a0 and $a1. They’ll be
restored as necessary in the function.

Is it possible to preserve $a0 and $a1 in any
of the other registers, instead of the stack?

comb:
sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)

... main body ...

lw $ra, 0($sp)
lw $s0, 4($sp)
addi $sp, $sp, 16
jr $ra

February 5, 2003 MIPS examples 6

The rest of comb

fact(n)
jal fact
move $s0, $v0

fact(k)
lw $a0, 12($sp)
jal fact
div $s0, $s0, $v0

fact(n-k)
lw $a0, 8($sp)
lw $a1, 12($sp)
sub $a0, $a0, $a1
jal fact
div $s0, $s0, $v0

The call fact(n) is easy.
— The value n is also the first argument of

comb, so it is already in $a0.
— The result is saved in register $s0.

For fact(k):
— We have to load k from memory, in case

fact(n) overwrote $a1.
— $s0 is updated with fact(n) / fact(k).

For fact(n-k):
— We have to restore both n and k.
— The final result of comb ends up in $s0.

February 5, 2003 MIPS examples 7

The whole kit and caboodle

The whole function is shown on the right.
Don’t forget to return the result! We must
move $s0 to $v0 before restoring registers
and returning.
That’s a lot of work for a simple one-line C
function.

comb:
sub $sp, $sp, 16
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $a0, 8($sp)
sw $a1, 12($sp)
jal fact
move $s0, $v0
lw $a0, 12($sp)
jal fact
div $s0, $s0, $v0
lw $a0, 8($sp)
lw $a1, 12($sp)
sub $a0, $a0, $a1
jal fact
div $s0, $s0, $v0
move $v0, $s0
lw $ra, 0($sp)
lw $s0, 4($sp)
addi $sp, $sp, 16
jr $ra

Compilers
are good,
mmkay?

February 5, 2003 MIPS examples 8

Famous Fibonacci Function

The Fibonacci sequence is often expressed recursively:

0 if n=0
fib(n) = 1 if n=1

fib(n-1) + fib(n-2) otherwise

This is easy to convert into a C program.

int fib(int n)
{

if (n <= 1)
return n;

else
return fib(n-1) + fib(n-2);

}

The translation to MIPS is not bad if you understood the first example.

February 5, 2003 MIPS examples 9

Some observations about fib

This function is similar to comb in some ways.
— fib calls another function (itself), so we will have to save $ra.
— We need to save the argument n across the first recursive call.
— We need a temporary register for the result of the first call.

A recursive function also acts as both caller and callee.
— Calling the same function guarantees that the same registers will be

used, and overwritten if we’re not careful.
— So to be careful, we have to save every register that is used.

February 5, 2003 MIPS examples 10

The base case

The base case of the recursion
is easy.
If $a0 is less than 1, then we
just return it. (We won’t worry
about testing for valid inputs
here.)
This part of the code does not
involve any function calls, so
there’s no need to preserve any
registers.

int fib(int n)
{
if (n <= 1)
return n;

else
return fib(n-1) + fib(n-2);

}

fib:
bgt $a0, 1,recurse
move $v0, $a0
jr $ra

February 5, 2003 MIPS examples 11

Doing the recursion

recurse:
sub $sp, $sp, 12
sw $ra, 0($sp)
sw $a0, 4($sp)

addi $a0, $a0, -1
jal fib
sw $v0, 8($sp)

lw $a0, 4($sp)
addi $a0, $a0, -2
jal fib

lw $v1, 8($sp)
add $v0, $v0, $v1

lw $ra, 0($sp)
addi $sp, $sp, 12
jr $ra

First save $ra and the argument $a0. An
extra word is allocated on the stack to
save the result of fib(n-1).

The argument n is already in $a0, so we
can decrement it and then “jal fib” to
implement the fib(n-1) call. The result is
put into the stack.

Retrieve n, and then call fib(n-2).

The results are summed and put in $v0.

We only need to restore $ra before
popping our frame and saying bye-bye.

February 5, 2003 MIPS examples 12

The complete fib

fib:
bgt $a0, 1, recurse
move $v0, $a0
jr $ra

recurse:
sub $sp, $sp, 12
sw $ra, 0($sp)
sw $a0, 4($sp)

addi $a0, $a0, -1
jal fib
sw $v0, 8($sp)
lw $a0, 4($sp)
addi $a0, $a0, -2
jal fib
lw $v1, 8($sp)
add $v0, $v0, $v1

lw $ra, 0($sp)
addi $sp, $sp, 12
jr $ra

February 5, 2003 MIPS examples 13

Representing strings

A C-style string is represented by an array of bytes.
— Elements are one-byte ASCII codes for each character.
— A 0 value marks the end of the array.

del127o111_95O79?63/47
~126n110^94N78>62.46
}125m109]93M77=61-45
|124l108\92L76<60,44
{123k107[91K75;59+43
z122j106Z90J74:58*42
y121I105Y89I73957)41
x120h104X88H72856(40
w119g103W87G71755’39
v118f102V86F70654&38
u117e101U85E69553%37
t116d100T84D68452$36
s115c99S83C67351#35
r114b98R82B66250”34
q113a97Q81A65149!33
p112`96P80@64048space32

February 5, 2003 MIPS examples 14

String manipulation

For example, “Harry Potter” can be stored as a 13-byte array.

We can convert a string to uppercase by manipulating the ASCII values.
— Lowercase letters a-z have ASCII codes from 97 to 122.
— Uppercase letters A-Z range from 65 to 90.
— A lowercase letter can be converted to uppercase by subtracting 32

from the ASCII code (e.g., 97 – 32 = 65).

72

\0rettoPyrraH

0114101116116111803212111411497

February 5, 2003 MIPS examples 15

Two versions of ToUpper

Both of these loop through a
string, subtracting 32 from
lowercase letters, until they
reach the terminating 0.
The first one accesses letters
by indexing the array str, and
incrementing the index on each
loop iteration.
The second one uses a pointer
that produces a letter when it’s
dereferenced. The pointer is
incremented by one on every
loop iteration.

void ToUpper(char str[])
{
int i = 0;
while (str[i] != 0) {
if (str[i] >= 97 && str[i] <= 122)
str[i] = str[i] - 32;

i++;
}

}

void ToUpper(char *str)
{
char *s = str;
while (*s != 0) {
if (*s >= 97 && *s <= 122)
*s = *s - 32;

s++;
}

}

February 5, 2003 MIPS examples 16

Array version

A direct translation of the array version means each iteration of the loop
must re-compute the address of str[i]—requiring two additions.

toupper:
li $t0, 0 # $t0 = i

loop:
add $t1, $t0, $a0 # $t1 = &str[i]
lb $t2, 0($t1) # $t2 = str[i]
beq $t2, $0, exit # $t2 = 0?
blt $t2, 97, next # $t2 < 97?
bgt $t2, 122, next # $t2 > 122?
sub $t2, $t2, 32 # convert
sb $t2, 0($t1) # and store back

next:
addi $t0, $t0, 1 # i++
j loop

exit:
jr $ra

Here we work with bytes, but if the array contained integers, this address
computation would require a multiplication as well.

February 5, 2003 MIPS examples 17

Pointer version

Instead, we could use a register to hold the exact address of the current
element. Each time through the loop, we’ll increment this register to
point to the next element.

toupper:
lb $t2, 0($a0) # $t2 = *s
beq $t2, $0, exit # $t2 = 0?
blt $t2, 97, next # $t2 < 97?
bgt $t2, 122, next # $t2 > 122?
sub $t2, $t2, 32 # convert
sb $t2, 0($a0) # and store back

next:
addi $a0, $a0, 1 # s++
j toupper

exit:
jr $ra

With an array of words, we would have to increment the pointer by 4 on
each iteration. But then we would only need one addition, instead of two
additions and a multiplication.

February 5, 2003 MIPS examples 18

Side by side

toupper: toupper:
li $t0, 0

loop:
add $t1, $t0, $a0
lb $t2, 0($t1) lb $t2, 0($a0)
beq $t2, $0, exit beq $t2, $0, exit
blt $t2, 97, next blt $t2, 97, next
bgt $t2, 122, next bgt $t2, 122, next
sub $t2, $t2, 32 sub $t2 $t2, 32
sb $t2, 0($t1) sb $t2, 0($a0)

next: next:
addi $t0, $t0, 1 addi $a0, $a0, 1
j loop j toupper

exit: exit:
jr $ra jr $ra

Another similar example is in Section 3.11 of Hennessy and Patterson.

February 5, 2003 MIPS examples 19

Summary

These three examples demonstrate that writing large, modular programs
in assembly language is difficult!
— It’s hard to figure out how to best use the limited number of registers.

(Register allocation is an important problem in writing compilers.)
— We must always follow the MIPS function call conventions regarding

the passing and returning of values and preservation of registers.
— There is only one addressing mode that must be used for all memory

accesses, whether to arguments or stack-allocated space.
You’ll get some good programming practice on the machine problem.

	MIPS examples
	Combinations
	Look before you leap!
	Callee-saved registers
	Caller-saved registers
	The rest of comb
	The whole kit and caboodle
	Famous Fibonacci Function
	Some observations about fib
	The base case
	Doing the recursion
	The complete fib
	Representing strings
	String manipulation
	Two versions of ToUpper
	Array version
	Pointer version
	Side by side
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:22:53-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

