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Multiplication

Multiplication is one of the harder arithmetic operations.
There are two basic ways to do multiplication in hardware.
— You can use a lot of hardware and get a relatively fast multiplier.
— You can use less hardware, but you’ll end up with a slower circuit.

Today we’ll see some algorithms for unsigned and signed multiplication.
These methods are applicable to both hardware and software.
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Binary multiplication example

Here is an example of unsigned binary multiplication, for 13 × 6 = 78.

Since we only multiply by 0 and 1, the partial products are always either 
0 or the multiplicand (1101 in this example).
The partial products must all be added together.
With two n-bit operands, the product has up to 2n bits.

Product0111001

0000+

1011
Partial products

1011

0000

Multiplier0110×

Multiplicand1011
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Hardware for generating partial products

One-bit multiplication corresponds to the logical AND operation.

0 × 0 = 0 0 × 1 = 0 1 × 0 = 0 1 × 1 = 1

This means we can use AND gates to generate each partial product.
— We can AND each multiplier bit with each multiplicand bit.
— Each partial product will be either 0 or the multiplicand itself.

Partial product 2

Product0111001

Partial product 30000+

1011

Partial product 11011

Partial product 00000

Multiplier0110×

Multiplicand1011
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Hardware for summing partial products

How can we add all the partial products together?
— We have to do n–1 additions to sum the n partial products.
— The final product may have 2n bits. But since the partial products are 

staggered leftwards, we only need to add n bits at a time.
So we can use n–1 adders, each of which adds n bits.

Product0111001

0000+

1011
Partial products

1011

0000

Multiplier0110×

Multiplicand1011
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A 4 × 4 multiplier (A × B = P)
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Analysis of this approach

How much hardware is needed to multiply two n-bit numbers?
— We need n2 AND gates to generate the n partial products.
— We use n–1 n-bit adders to sum the partial products.

A circuit for 32-bit multiplication, for example, requires 1,024 AND gates 
and thirty-one 32-bit adders.
The biggest hardware and time expense is in all of those adders.
— Ripple carry adders are slow for large numbers.
— Other types of adders, like carry lookahead or carry save, will speed 

things up, but only by introducing even more gates.
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Sequential multiplication

Another idea is to perform the multiplication in several steps, instead of 
doing it with a combinational circuit.
Each step could generate and add one partial product.

for i = 0 to n–1
compute partial product i from multiplier bit i
add the partial product to the final product

We can build this as a sequential circuit.
— The big advantage is that we’ll need just one adder, which is used n

times in generating the final product. (Compare this with the previous 
scheme, where n–1 adders were each used once.)

— The disadvantage is that n distinct steps are required for the multiply.



February 19, 2003 Multiplication 8

Shift registers

The product can be 2n bits long, so we’ll use a 2n-bit adder for now.
How can we “stagger” the partial products over successive steps?

One solution is to put the multiplicand in a shift register—on each step, 
we’ll shift the multiplicand left by one position before ANDing it with the 
multiplier bits.
We’ll put the multiplier in a shift register too, so it’ll be easy to extract 
each bit with a shift operation.

0

0

0

0

0

Product0111001

0000000+

0010110
Partial products

0101100

0000000

Multiplier0110×

Multiplicand1011
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A 32-bit sequential multiplier

For a 32-bit multiplier, the multiplicand goes into a 64-bit shift register, 
so we can shift it leftwards and generate all possible partial products.
The 32-bit multiplier register shifts to the right, so on each step bit 0 of 
the register will contain the next bit of the multiplier.
A 64-bit adder sums the current product and the shifted multiplicand.

64

64

Product

64

Multiplicand

Adder

Control 
write

shift
left

shift
right

bit 0

Multiplier
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Initialization

The registers must be initialized before the multiplication can begin.
— The lower 32 bits of the Multiplicand register should be loaded with 

the multiplicand, while the upper 32 bits are set to 0.
— The 32-bit Multiplier register is initialized with the multiplier.
— The 64-bit product register is cleared to 0.

64

64

Product

64

Multiplicand

Adder

Control 
write

shift
left

shift
right

bit 0

Multiplier



February 19, 2003 Multiplication 11

Multiplier control

In each step, the control unit checks bit 0 of the multiplier register.
— If the bit is 0 then the corresponding partial product is also 0, so we 

should leave the Product register alone by setting write=0.
— If the bit is 1, we have to add the shifted multiplicand to the current 

Product, so we set write=1.

64

64

Product

64

Multiplicand

Adder

Control 
write

shift
left

shift
right

bit 0

Multiplier
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Sequential multiplication algorithm

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

64

64

Product

64

Multiplicand

Adder

Control 
write

shift
left

shift
right

bit 0

Multiplier
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Doing it by hand with 4 bits

For a four-bit multiplier, we will need one four-bit register, two eight-bit 
registers and an eight-bit adder.
Let’s multiply 1101 by 0110. The initial register values are shown below.

0110

8

8

0000 0000

8

0000 1101

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 1a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0110

8

8

0000 0000

8

0000 1101

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 1b

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0011

8

8

0000 0000

8

0001 1010

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 2a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

(Old Product:
0000 0000)

0011

8

8

0001 1010

8

0001 1010

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 2b

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0001

8

8

0001 1010

8

0011 0100

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 3a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

(Old Product:
0001 1010)

0001

8

8

0100 1110

8

0011 0100

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 3b

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0000

8

8

0100 1110

8

0110 1000

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 4a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0000

8

8

0100 1110

8

0110 1000

Adder

Control 
write

shift
left

shift
right

bit 0
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Step 4b (unnecessary)

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0000

8

8

0100 1110

8

1101 0000

Adder

Control 
write

shift
left

shift
right

bit 0
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Saving some hardware

Instead of shifting the multiplicand to the left, we could also shift the 
product to the right.
Using this approach for a 32-bit multiplier saves lots of gates.
— If we don’t shift the multiplicand, we can store it in a 32-bit register.
— We can also replace the 64-bit adder with a much smaller 32-bit one.

32

Multiplicand

Multiplier

Control 

write

shift
right

shift
right

bit 0

32

32

Product

Adder
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The second sequential multiplier

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to the left half of Product
shift Product right one bit
shift Multiplier right one bit

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to the left half of Product
shift Product right one bit
shift Multiplier right one bit

Multiplier

Control 

write

shift
right

shift
right

bit 0

32

32

32

Multiplicand

Adder

Product
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What about signed multiplication?

Unfortunately, these circuits don’t work for signed numbers.
— As two’s complement numbers, 1101 × 0110 corresponds to –3 × 6.
— Their product should be 1110 1110 (–18), not 0100 1110 (+78).

We could use our circuit to multiply the magnitudes of two signed values, 
and then adjust the sign of the result accordingly.
But this would need extra hardware to test the signs of the operands, and 
to negate the operands and/or result if necessary.
Booth’s algorithm is a clever sequential multiplication method.
— It works for signed two’s complement numbers.
— It can also reduce the number of additions needed in a multiplication.
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Booth’s wonderful idea

Booth noticed that multiplying x by 2i–1 is equivalent to multiplying x by 
2i and then subtracting x.

(2i–1)x = 2ix – x

This gives us a chance to eliminate some additions in certain cases.
Consider multiplying 00101 × 00111 (5 × 7).
— This would normally require three additions, one for each 1 bit in the 

multiplier.

(00101 × 00001) + (00101 × 00010) + (00101 × 00100)

— If we did 00101 × 01000 (5 × 8) instead and then subtracted 00101 (5), 
we would need just one addition and one subtraction.

(00101 × 01000) – (00101 × 00001)

— In decimal, this corresponds to (5 × 7) = (5 × 8) – (5 × 1).
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Generalizing this wonderful idea

This can be generalized to a sequence of 1s anywhere in the multiplier:

(2i–2j)x = 2ix – 2jx, where i > j

Consider 00101 × 01110 (5 × 14), which normally requires three additions.
— We can rewrite this as (00101 × 10000) – (00101 × 00010).
— In decimal, 5 × 14 = (5 × 16) – (5 × 2).
— Again, we need just one addition and one subtraction.

The more consecutive 1s there are in the multiplier, the more addition 
operations we can eliminate.
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Runs of ones

Booth’s algorithm looks for sequences of 1s in the multiplier.
We need to scan the multiplier two bits at a time, from right to left. 
There are four cases.

The algorithm proceeds by scanning the multiplier bits, two at a time.
— When a sequence of 1s begins, we’ll do a subtraction (–2jx).
— When a sequence of 1s ends, we’ll do an addition (2ix).

To get things started, we need to add a bit to the right of the original 
multiplier—this is usually called “bit –1”.

00001111000Middle of a string of 0s00

00001111000End of a string of 1s10

00001111000Middle of a string of 1s11

00001111000Start of a string of 1s01

ExampleMeaningBit i-1Bit i
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Booth’s wonderful algorithm

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

If we’re in the middle of a run of 0s or 1s, then we don’t need to do any 
addition or subtraction—this makes Booth’s algorithm potentially faster.
To make signed multiplication work, the sign of the product has to be 
preserved on right shifts; this is sometimes called an arithmetic shift.
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A wonderful example of Booth’s wonderful algorithm

Let’s multiply 1101 × 0110 (–3 × 6); the result should be 1110 1110 (–18).

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0110 00000 00001101

MultiplierProductMultiplicand
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Step 1a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0110 00000 00001101

MultiplierProductMultiplicand

Since the multiplier bits are 00, we don’t need to add or subtract.



February 19, 2003 Multiplication 31

Step 1b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0011 00000 00001101

MultiplierProductMultiplicand
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Step 2a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0011 00011 00001101

MultiplierProductMultiplicand

This time the multiplier bits are 10, so we subtract Multiplicand (1101) 
from the left half of Product (originally 0000).
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Step 2b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0001 10001 10001101

MultiplierProductMultiplicand
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Step 3a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0001 10001 10001101

MultiplierProductMultiplicand

The multiplier bits are 11, so no adds or subtracts are needed.
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Step 3b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0000 10000 11001101

MultiplierProductMultiplicand
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Step 4a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0000 11101 11001101

MultiplierProductMultiplicand

Now the multiplier bits are 01, so we add Multiplicand (1101) to the left 
half of Product (originally 0000).
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Step 4b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0000 01110 11101101

MultiplierProductMultiplicand

The shift right of the Product has to preserve the sign.
The final result, 1110 1110, is –18 as an 8-bit two’s complement number.
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MIPS multiplication

So far we’ve been using the mul instruction to do multiplications, even 
though multiplying two 32-bit numbers could yield a 64-bit result.

mul $t0, $t1, $t2

In MIPS, mul is a pseudo-instruction. Multiplication is actually done using 
mult, which has only two source operands.

mult $t1, $t2

The result goes in two special 32-bit registers called Hi and Lo, which can 
be copied into regular registers with special one-operand instructions.

mfhi $t3

mflo $t0

So a MIPS pseudo-instruction like mul $t0, $t1, $t2 is translated into:

mult $t1, $t2

mflo $t0
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Summary

Multiplication is expensive, in terms of both hardware and time.
— Combinational multipliers need more hardware.
— Sequential multipliers require more time.

Booth’s algorithm for multiplication has two important advantages.
— It can handle signed two’s complement numbers.
— It may be able to perform fewer additions.

The mul instruction in MIPS is really a pseudo-instruction.
— MIPS uses two special registers Hi and Lo to save the 64-bit result of a 

32-bit mult instruction.
— Special instructions mfhi and mflo are used to access those registers.
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