
February 19, 2003 ©2001-2003 Howard Huang 1

Multiplication

Multiplication is one of the harder arithmetic operations.
There are two basic ways to do multiplication in hardware.
— You can use a lot of hardware and get a relatively fast multiplier.
— You can use less hardware, but you’ll end up with a slower circuit.

Today we’ll see some algorithms for unsigned and signed multiplication.
These methods are applicable to both hardware and software.

February 19, 2003 Multiplication 2

Binary multiplication example

Here is an example of unsigned binary multiplication, for 13 × 6 = 78.

Since we only multiply by 0 and 1, the partial products are always either
0 or the multiplicand (1101 in this example).
The partial products must all be added together.
With two n-bit operands, the product has up to 2n bits.

Product0111001

0000+

1011
Partial products

1011

0000

Multiplier0110×

Multiplicand1011

February 19, 2003 Multiplication 3

Hardware for generating partial products

One-bit multiplication corresponds to the logical AND operation.

0 × 0 = 0 0 × 1 = 0 1 × 0 = 0 1 × 1 = 1

This means we can use AND gates to generate each partial product.
— We can AND each multiplier bit with each multiplicand bit.
— Each partial product will be either 0 or the multiplicand itself.

Partial product 2

Product0111001

Partial product 30000+

1011

Partial product 11011

Partial product 00000

Multiplier0110×

Multiplicand1011

February 19, 2003 Multiplication 4

Hardware for summing partial products

How can we add all the partial products together?
— We have to do n–1 additions to sum the n partial products.
— The final product may have 2n bits. But since the partial products are

staggered leftwards, we only need to add n bits at a time.
So we can use n–1 adders, each of which adds n bits.

Product0111001

0000+

1011
Partial products

1011

0000

Multiplier0110×

Multiplicand1011

February 19, 2003 Multiplication 5

A 4 × 4 multiplier (A × B = P)

February 19, 2003 Multiplication 6

Analysis of this approach

How much hardware is needed to multiply two n-bit numbers?
— We need n2 AND gates to generate the n partial products.
— We use n–1 n-bit adders to sum the partial products.

A circuit for 32-bit multiplication, for example, requires 1,024 AND gates
and thirty-one 32-bit adders.
The biggest hardware and time expense is in all of those adders.
— Ripple carry adders are slow for large numbers.
— Other types of adders, like carry lookahead or carry save, will speed

things up, but only by introducing even more gates.

February 19, 2003 Multiplication 7

Sequential multiplication

Another idea is to perform the multiplication in several steps, instead of
doing it with a combinational circuit.
Each step could generate and add one partial product.

for i = 0 to n–1
compute partial product i from multiplier bit i
add the partial product to the final product

We can build this as a sequential circuit.
— The big advantage is that we’ll need just one adder, which is used n

times in generating the final product. (Compare this with the previous
scheme, where n–1 adders were each used once.)

— The disadvantage is that n distinct steps are required for the multiply.

February 19, 2003 Multiplication 8

Shift registers

The product can be 2n bits long, so we’ll use a 2n-bit adder for now.
How can we “stagger” the partial products over successive steps?

One solution is to put the multiplicand in a shift register—on each step,
we’ll shift the multiplicand left by one position before ANDing it with the
multiplier bits.
We’ll put the multiplier in a shift register too, so it’ll be easy to extract
each bit with a shift operation.

0

0

0

0

0

Product0111001

0000000+

0010110
Partial products

0101100

0000000

Multiplier0110×

Multiplicand1011

February 19, 2003 Multiplication 9

A 32-bit sequential multiplier

For a 32-bit multiplier, the multiplicand goes into a 64-bit shift register,
so we can shift it leftwards and generate all possible partial products.
The 32-bit multiplier register shifts to the right, so on each step bit 0 of
the register will contain the next bit of the multiplier.
A 64-bit adder sums the current product and the shifted multiplicand.

64

64

Product

64

Multiplicand

Adder

Control
write

shift
left

shift
right

bit 0

Multiplier

February 19, 2003 Multiplication 10

Initialization

The registers must be initialized before the multiplication can begin.
— The lower 32 bits of the Multiplicand register should be loaded with

the multiplicand, while the upper 32 bits are set to 0.
— The 32-bit Multiplier register is initialized with the multiplier.
— The 64-bit product register is cleared to 0.

64

64

Product

64

Multiplicand

Adder

Control
write

shift
left

shift
right

bit 0

Multiplier

February 19, 2003 Multiplication 11

Multiplier control

In each step, the control unit checks bit 0 of the multiplier register.
— If the bit is 0 then the corresponding partial product is also 0, so we

should leave the Product register alone by setting write=0.
— If the bit is 1, we have to add the shifted multiplicand to the current

Product, so we set write=1.

64

64

Product

64

Multiplicand

Adder

Control
write

shift
left

shift
right

bit 0

Multiplier

February 19, 2003 Multiplication 12

Sequential multiplication algorithm

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

64

64

Product

64

Multiplicand

Adder

Control
write

shift
left

shift
right

bit 0

Multiplier

February 19, 2003 Multiplication 13

Doing it by hand with 4 bits

For a four-bit multiplier, we will need one four-bit register, two eight-bit
registers and an eight-bit adder.
Let’s multiply 1101 by 0110. The initial register values are shown below.

0110

8

8

0000 0000

8

0000 1101

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 14

Step 1a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0110

8

8

0000 0000

8

0000 1101

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 15

Step 1b

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0011

8

8

0000 0000

8

0001 1010

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 16

Step 2a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

(Old Product:
0000 0000)

0011

8

8

0001 1010

8

0001 1010

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 17

Step 2b

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0001

8

8

0001 1010

8

0011 0100

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 18

Step 3a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

(Old Product:
0001 1010)

0001

8

8

0100 1110

8

0011 0100

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 19

Step 3b

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0000

8

8

0100 1110

8

0110 1000

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 20

Step 4a

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0000

8

8

0100 1110

8

0110 1000

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 21

Step 4b (unnecessary)

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

repeat 4 times
if bit 0 of Multiplier is 1, then

write the Adder output to Product
shift Multiplicand left one bit
shift Multiplier right one bit

0000

8

8

0100 1110

8

1101 0000

Adder

Control
write

shift
left

shift
right

bit 0

February 19, 2003 Multiplication 22

Saving some hardware

Instead of shifting the multiplicand to the left, we could also shift the
product to the right.
Using this approach for a 32-bit multiplier saves lots of gates.
— If we don’t shift the multiplicand, we can store it in a 32-bit register.
— We can also replace the 64-bit adder with a much smaller 32-bit one.

32

Multiplicand

Multiplier

Control

write

shift
right

shift
right

bit 0

32

32

Product

Adder

February 19, 2003 Multiplication 23

The second sequential multiplier

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to the left half of Product
shift Product right one bit
shift Multiplier right one bit

repeat 32 times
if bit 0 of Multiplier is 1, then

write the Adder output to the left half of Product
shift Product right one bit
shift Multiplier right one bit

Multiplier

Control

write

shift
right

shift
right

bit 0

32

32

32

Multiplicand

Adder

Product

February 19, 2003 Multiplication 24

What about signed multiplication?

Unfortunately, these circuits don’t work for signed numbers.
— As two’s complement numbers, 1101 × 0110 corresponds to –3 × 6.
— Their product should be 1110 1110 (–18), not 0100 1110 (+78).

We could use our circuit to multiply the magnitudes of two signed values,
and then adjust the sign of the result accordingly.
But this would need extra hardware to test the signs of the operands, and
to negate the operands and/or result if necessary.
Booth’s algorithm is a clever sequential multiplication method.
— It works for signed two’s complement numbers.
— It can also reduce the number of additions needed in a multiplication.

February 19, 2003 Multiplication 25

Booth’s wonderful idea

Booth noticed that multiplying x by 2i–1 is equivalent to multiplying x by
2i and then subtracting x.

(2i–1)x = 2ix – x

This gives us a chance to eliminate some additions in certain cases.
Consider multiplying 00101 × 00111 (5 × 7).
— This would normally require three additions, one for each 1 bit in the

multiplier.

(00101 × 00001) + (00101 × 00010) + (00101 × 00100)

— If we did 00101 × 01000 (5 × 8) instead and then subtracted 00101 (5),
we would need just one addition and one subtraction.

(00101 × 01000) – (00101 × 00001)

— In decimal, this corresponds to (5 × 7) = (5 × 8) – (5 × 1).

February 19, 2003 Multiplication 26

Generalizing this wonderful idea

This can be generalized to a sequence of 1s anywhere in the multiplier:

(2i–2j)x = 2ix – 2jx, where i > j

Consider 00101 × 01110 (5 × 14), which normally requires three additions.
— We can rewrite this as (00101 × 10000) – (00101 × 00010).
— In decimal, 5 × 14 = (5 × 16) – (5 × 2).
— Again, we need just one addition and one subtraction.

The more consecutive 1s there are in the multiplier, the more addition
operations we can eliminate.

February 19, 2003 Multiplication 27

Runs of ones

Booth’s algorithm looks for sequences of 1s in the multiplier.
We need to scan the multiplier two bits at a time, from right to left.
There are four cases.

The algorithm proceeds by scanning the multiplier bits, two at a time.
— When a sequence of 1s begins, we’ll do a subtraction (–2jx).
— When a sequence of 1s ends, we’ll do an addition (2ix).

To get things started, we need to add a bit to the right of the original
multiplier—this is usually called “bit –1”.

00001111000Middle of a string of 0s00

00001111000End of a string of 1s10

00001111000Middle of a string of 1s11

00001111000Start of a string of 1s01

ExampleMeaningBit i-1Bit i

February 19, 2003 Multiplication 28

Booth’s wonderful algorithm

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

If we’re in the middle of a run of 0s or 1s, then we don’t need to do any
addition or subtraction—this makes Booth’s algorithm potentially faster.
To make signed multiplication work, the sign of the product has to be
preserved on right shifts; this is sometimes called an arithmetic shift.

February 19, 2003 Multiplication 29

A wonderful example of Booth’s wonderful algorithm

Let’s multiply 1101 × 0110 (–3 × 6); the result should be 1110 1110 (–18).

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0110 00000 00001101

MultiplierProductMultiplicand

February 19, 2003 Multiplication 30

Step 1a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0110 00000 00001101

MultiplierProductMultiplicand

Since the multiplier bits are 00, we don’t need to add or subtract.

February 19, 2003 Multiplication 31

Step 1b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0011 00000 00001101

MultiplierProductMultiplicand

February 19, 2003 Multiplication 32

Step 2a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0011 00011 00001101

MultiplierProductMultiplicand

This time the multiplier bits are 10, so we subtract Multiplicand (1101)
from the left half of Product (originally 0000).

February 19, 2003 Multiplication 33

Step 2b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0001 10001 10001101

MultiplierProductMultiplicand

February 19, 2003 Multiplication 34

Step 3a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0001 10001 10001101

MultiplierProductMultiplicand

The multiplier bits are 11, so no adds or subtracts are needed.

February 19, 2003 Multiplication 35

Step 3b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0000 10000 11001101

MultiplierProductMultiplicand

February 19, 2003 Multiplication 36

Step 4a

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0000 11101 11001101

MultiplierProductMultiplicand

Now the multiplier bits are 01, so we add Multiplicand (1101) to the left
half of Product (originally 0000).

February 19, 2003 Multiplication 37

Step 4b

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

initialize Product to 0, and bit –1 of Multiplier to 0
repeat n times

if bit 0 and bit –1 of Multiplier are 10, then
subtract Multiplicand from the left half of Product

else if bit 0 and bit –1 of Multiplier are 01, then
add Multiplicand to the left half of Product

shift Product right by one position, preserving the sign
shift Multiplier right by one position, including bit –1

0000 01110 11101101

MultiplierProductMultiplicand

The shift right of the Product has to preserve the sign.
The final result, 1110 1110, is –18 as an 8-bit two’s complement number.

February 19, 2003 Multiplication 38

MIPS multiplication

So far we’ve been using the mul instruction to do multiplications, even
though multiplying two 32-bit numbers could yield a 64-bit result.

mul $t0, $t1, $t2

In MIPS, mul is a pseudo-instruction. Multiplication is actually done using
mult, which has only two source operands.

mult $t1, $t2

The result goes in two special 32-bit registers called Hi and Lo, which can
be copied into regular registers with special one-operand instructions.

mfhi $t3

mflo $t0

So a MIPS pseudo-instruction like mul $t0, $t1, $t2 is translated into:

mult $t1, $t2

mflo $t0

February 19, 2003 Multiplication 39

Summary

Multiplication is expensive, in terms of both hardware and time.
— Combinational multipliers need more hardware.
— Sequential multipliers require more time.

Booth’s algorithm for multiplication has two important advantages.
— It can handle signed two’s complement numbers.
— It may be able to perform fewer additions.

The mul instruction in MIPS is really a pseudo-instruction.
— MIPS uses two special registers Hi and Lo to save the 64-bit result of a

32-bit mult instruction.
— Special instructions mfhi and mflo are used to access those registers.

	Multiplication
	Binary multiplication example
	Hardware for generating partial products
	Hardware for summing partial products
	A 4 × 4 multiplier (A × B = P)
	Analysis of this approach
	Sequential multiplication
	Shift registers
	A 32-bit sequential multiplier
	Initialization
	Multiplier control
	Sequential multiplication algorithm
	Doing it by hand with 4 bits
	Step 1a
	Step 1b
	Step 2a
	Step 2b
	Step 3a
	Step 3b
	Step 4a
	Step 4b (unnecessary)
	Saving some hardware
	The second sequential multiplier
	What about signed multiplication?
	Booth’s wonderful idea
	Generalizing this wonderful idea
	Runs of ones
	Booth’s wonderful algorithm
	A wonderful example of Booth’s wonderful algorithm
	Step 1a
	Step 1b
	Step 2a
	Step 2b
	Step 3a
	Step 3b
	Step 4a
	Step 4b
	MIPS multiplication
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:23:47-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

