
April 7, 2003 ©2001-2003 Howard Huang 1

Exceptions and interrupts

An exception or interrupt is an unexpected event that requires the CPU to
pause or stop the current program.
Exception handling is the hardware analog of error handling in software.
— Classes don’t often talk about errors, so it’s easy to forget them.
— Proper error handling is very important in real systems, and a lot of

effort is often devoted to error checking and recovery.
We’ll find that exception handling requires support from both hardware
and software (the operating system) sides.

April 7, 2003 Exceptions and interrupts 2

Exception handling

Exceptions are typically errors that occur within the processor.
— The CPU tries to execute an illegal instruction opcode.
— An arithmetic instruction overflows, or attempts to divide by 0.

There are two possible ways of resolving these errors.
— The operating system can force a program with a serious error to quit.
— Smaller errors may cause an error message to be sent to the program.

Modern languages like Java allow programmers to “catch” exceptions so
applications can deal with errors more gracefully.

April 7, 2003 Exceptions and interrupts 3

Interrupt handling

Interrupts are external errors that require the processor’s attention.
— The user presses the machine’s sleep or reset buttons.
— Peripherals and other I/O devices may need attention.
— The virtual memory system needs to access the hard disk to complete

a lw or sw instruction.
These situations are not really errors.
— They happen normally. (We’ll talk about memory and I/O later on.)
— The interrupted program usually needs to resume execution after the

interrupt is handled.
It is the operating system’s responsibility to do the right thing, such as:
— Save the current state and shut down the hardware devices.
— Find and load the correct data from the hard disk
— Transfer data to/from the I/O device, or install drivers.

April 7, 2003 Exceptions and interrupts 4

The hardware/software interface again

The most uniform approach is to have the operating system handle both
exceptions and interrupts.
The operating system code contains an exception handler, which decides
how exceptions and interrupts should be processed.
The exception handler needs to know two things.
— The cause of the exception (e.g., overflow or page fault).
— What instruction was executing when the exception occurred. This

helps the operating system report the error or resume the program.
This is another example of interaction between software and hardware,
as the cause and current instruction must be supplied to the operating
system by the processor.

April 7, 2003 Exceptions and interrupts 5

The CPU’s basic responsibility

The CPU first stores the relevant information for the operating system.
— The exception is stored in a special Cause register.
— The instruction that was executing when the exception occurred is

stored in the EPC (exception program counter) register.
Then the processor transfers control to the operating system by placing
the exception handler’s address into the PC.
We’ll look at how this might work in our multicycle datapath, and then
also point out some issues with a pipelined datapath.

April 7, 2003 Exceptions and interrupts 6

The original multicycle datapath

Result

Zero
ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0
M
u
x
1

PCSource

PC

A

B
ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

April 7, 2003 Exceptions and interrupts 7

Exceptions for our multicycle CPU

There are only two possible exceptions in our simple processor.
— An illegal instruction can be detected by the control unit when it tries

to decode the instruction word.
— We can modify the ALU to generate an overflow signal for arithmetic

overflows. The control unit then checks the overflow signal and
causes an exception if needed.

If an exception occurs, the control unit needs to do several things.
1. Store the current PC in the EPC register (the diagram on the following

page actually stores PC + 4 for simplicity).
2. Store the exception cause in the Cause register.

— We’ll say illegal instructions are Cause = 0.
— Overflows will be represented by Cause = 1.

3. Finally, set the PC to the address of the operating system’s interrupt
handler. This address must be known by the CPU; we’ll assume it’s at
memory location C0000000 in hexadecimal.

April 7, 2003 Exceptions and interrupts 8

Multicycle datapath with exceptions

Result
Zero

ALU

ALUOp

0
M
u
x
1

ALUSrcA

0
1
2
3

ALUSrcB

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Address

Memory

Mem
Data

Write
data

Sign
extend

Shift
left 2

0

1

2

PCSource

PC

A

B

ALU
Out

4[31-26]
[25-21]
[20-16]
[15-11]

[15-0]

Instruction
register

Memory
data

register

IRWrite
0
M
u
x
1

RegDst

0
M
u
x
1

MemToReg

0
M
u
x
1

IorD

MemRead

MemWrite

PCWrite

Overflow C000
0000

EPC

EPCWrite

ControlCause

CauseWrite

Cause

April 7, 2003 Exceptions and interrupts 9

Multicycle control unit changes

IorD = 0
MemRead = 1
IRWrite = 1
ALUSrcA = 0
ALUSrcB = 01
ALUOp = 010
PCSource = 0
PCWrite = 1

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 010

Branch
completion

R-type
execution

Memory
read

lw register
write

Op = R-type

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 110
PCSource = 0

PCWrite = Zero

ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

R-type
writeback

Memory
write

RegDst = 1
MemToReg = 0
RegWrite = 1

IorD = 1
MemWrite = 1

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 010

IorD = 1
MemRead = 1

RegDst = 0
MemToReg = 1
RegWrite = 1

Cause = 1
CauseWrite = 1
EPCWrite = 1
PCSource = 11
PCWrite = 1

Overflow
exception

Cause = 0
CauseWrite = 1
EPCWrite = 1
PCSource = 11
PCWrite = 1

Illegal
instruction
exception

Instruction fetch
and PC increment

Register fetch and
branch computation

Op = BEQ

Overflow

Op = unknown

Op = SWEffective address
computation

Op = LW/SW

Op = LW

April 7, 2003 Exceptions and interrupts 10

When to interrupt the processor

An arithmetic instruction will update its destination
register even if an overflow occurs, because the
“R-type writeback” step occurs before the
overflow exception step.
This may not always be what is
desired. For example, if the
overflowed instruction was

add $t1, $t1, $t2

the writeback stage would
overwrite the original value of $t1 before the exception occurs, possibly
making debugging much harder.

R-type
execution

Op = R-type

ALUSrcA = 1
ALUSrcB = 00
ALUOp = func

R-type
writeback

RegDst = 1
MemToReg = 0
RegWrite = 1

Cause = 1
CauseWrite = 1
EPCWrite = 1
PCSource = 11
PCWrite = 1

Overflow

Overflow
exception

April 7, 2003 Exceptions and interrupts 11

Other kinds of exceptions

Exceptions can occur in different instruction execution stages, depending
on the actual instruction set architecture and datapath design.
— For example, a virtual memory page fault might be raised during the

instruction fetch or data memory stages.
— External interrupts can also arrive at any time.

Exception handling is a major challenge in CPU design.
— Handling all of the possible exceptions can result in a very large state

diagram and a very complex control unit.
— Remember that you have to be careful not to make the control unit

too complicated, or cycle times will increase.
As an analogy, error handling in programs usually yields longer and more
complex code.

April 7, 2003 Exceptions and interrupts 12

Our pipelined datapath

Read
address

Instruction
memory

Instruction
[31-0] Address

Write
data

Data
memory

Read
data

MemWrite

MemRead

1

0

MemToReg

4

Shift
left 2

Add

ALUSrc

Result

ZeroALU

ALUOp

Instr [15 - 0] RegDst

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 2

Read
data 1

Registers

RegWrite

Add

Instr [15 - 11]

Instr [20 - 16]
0

1

0

1

IF/ID

ID/EX

EX/MEM

MEM/WBControl
M

WB

WB

P
C

1

0

PCSrc

Sign
extend

EX

M

WB

April 7, 2003 Exceptions and interrupts 13

Pipelining and exceptions

In a pipelined design, exceptions are another form of control hazard— just
like branches, they alter the normal program flow so it’s not always clear
what the next instruction should be.
Handling exceptions is much more difficult with pipelining, since there
are several instructions executing at once.
— The control unit has to determine which of the several instructions in

the pipeline caused the exception.
— It’s also possible for multiple exceptions to occur in the same cycle!

For example, an instruction in its EX stage could overflow at the same
time another instruction causes an illegal opcode exception.

April 7, 2003 Exceptions and interrupts 14

Precise exceptions

Deciding where to interrupt or stop the pipeline is also difficult. Ideally, a
processor would implement precise exceptions.
— All instructions before the offending one should complete execution.
— The CPU should stop on the excepting instruction, storing its address

in the EPC register.
— Instructions after that one should not be executed.

In a pipelined CPU, this means that the control unit must ensure some of
the instructions in the pipeline complete, while others are flushed.
— Again this can lead to very complex control.
— Flushing for exceptions can limit the performance of deep pipelines,

just like flushing for branches. If an instruction in stage 17 causes an
exception, then the following 16 instructions are flushed and might
need to be re-executed.

Precise exceptions are not difficult to implement in a single or multicycle
datapath, since there is only one instruction active in any given cycle.

April 7, 2003 Exceptions and interrupts 15

Summary

Exceptions and interrupts are different hardware events that force the
CPU to either pause or stop the running program.
The operating system and processor work together to handle exceptions.
— The OS provides an exception handler to process the errors.
— The processor records and passes the exception program counter and

exception cause to the operating system.
Handling all possible exceptions and interrupts can lead to complex and
slow control units and processors.
Exception handling presents special challenges for pipelined datapaths.
— Multiple exceptions can occur simultaneously, so supporting precise

exceptions is difficult.
— Complicated control units and excessive flushing can reduce the CPU

performance.

	Exceptions and interrupts
	Exception handling
	Interrupt handling
	The hardware/software interface again
	The CPU’s basic responsibility
	The original multicycle datapath
	Exceptions for our multicycle CPU
	Multicycle datapath with exceptions
	Multicycle control unit changes
	When to interrupt the processor
	Other kinds of exceptions
	Our pipelined datapath
	Pipelining and exceptions
	Precise exceptions
	Summary

		hhuang@cs.uiuc.edu
	2003-08-22T02:26:58-0500
	Urbana, Illinois
	Howard Huang
	I am the author of this document

